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1. introduction

This thesis is the result of a research inside the �elds of theoretical computer
science and logic. It studies the connection between process calculi, that
model parallel and concurrent computation, and ludics, that is a reformu-
lation of logic generated from multiplicative-additive linear logic and based
on the concept of interaction. The relation between these two systems falls
inside the broader topic of the Curry-Howard correspondence, that originally
ties together intuitionistic logic and λ-calculus. We will mostly work with the
paradigm of process algebras, Milner's Calculus of Communicating Systems,
and the original formulation of ludics by Girard's, to �nd a Curry-Howard-
like correspondence between them. Our focus will be, rather than on the
objects of the two systems, on their dynamic, i.e. the way these systems are
used and thus the way terms are transformed and obtain their meaning. The
core notion of interaction found in ludics will �t our approach particularly
well.

A correspondence between proofs and programs

The Curry-Howard correspondence strongly ties formal proofs and programs,
forming an extremely proli�c connection between proof theory and theory of
computation, thus between (intuitionistic) logic and programming languages.
This remarkable realization has made possible great advances in both �elds,
and given the possibility to apply the tools of logic on programs, giving birth,
for instance, to type systems and denotational semantics.

Proof theory is the study of proofs as formal objects, and is mainly based
on two formal syntaxes for proofs: natural deduction, and sequent calculus,
introduced by Gentzen in 1935 [31, 32]. The main theorem of Gentzen's
works, the cut-elimination theorem, is at the core of proof-theory, de�ning
the dynamic of proofs: any sequent calculus proof with a cut-rule, that is
the formalization of classical deductive reasoning as the syllogism, can be
re-written as a proof of the very same statement, but without cuts. Theory
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of computation arises in the same years with the birth of various models of
computation, as Turing's machines, by Turing, and the λ-calculus, by Church,
that can be considered the �rst programming language, and is still widely
used as a theoretical tool with direct applications to functional programming.

A correspondence between proofs and programs, in the sense of λ-calculus
terms or Turing's machines, was at �rst proposed by Curry, and then later re-
�ned by Howard, forming a clear connection between simply-typed λ-calculus
and intuitionistic natural deduction. The correspondence interests multiple
levels of depth:

Intuitionistic Logic Formulas correspond to Types.

Atomic formulas to Base types.

Logical connectives to Type constructors.

Proofs correspond to λ-terms.

the ⇒ introduction rule to λ-abstraction.

the ⇒ elimination rule to term-application.

Cut-elimination corresponds to β-reduction.

cuts to β-redexes.

The most interesting level of the correspondence, and the one which is
the focus of this thesis, is the last one, that states a correspondence in the
dynamic of proofs and programs: it tells us that the procedure of cut-
elimination is actually a form of computation, and vice-versa.

Our position inside the setting of the Curry-Howard correspondence is
within the attempts to extended this correspondence to models of di�erent
kind of computations (as parallel and concurrent computation), by using
di�erent logical systems (as linear logic or ludics).

Linear logic and Ludics

Resource consumption and duplication of connectives

Linear logic, introduced by Girard's [33], is a resource-sensitive logic. This
attention to resources becomes clear once put in contrast with intuitionistic
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logic: the intuitionistic implication A ⇒ B in linear logic is re�ned into a
particular case of the linear implication:

!A⊸ B,

where ! is a special modality that explicitly allows multiple uses of the hy-
pothesis A, that otherwise would be consumed for each �creation� of B; that
is because ⊸ is a linear function that consumes one occurrence of A (the
input) to obtain one occurrence of B (the output).

The consequence on the syntax is a restriction of the structural rules
(weakening and contraction rules) to the exponential connectives ! and ?,
that are the only ones allowing replication or absorption of formulas, and the
duplication of the standard connectives:

� ∧ into & and ⊗;

� ∨ into ` and ⊕,

depending on their nature as respectively additive (& and `), or multiplica-
tive (⊗ and ⊕) connectives. However, with this duplication, another distinc-
tion arises between the connectives, that can be grouped depending on their
polarity � positive or negative� a property linked with the reversibility of
rules in a proof, i.e. the fact that we can prove the premises of a rule if we
proved its conclusion, and vice-versa. We have that

� reversible connectives (& and `) are said negatives;
� irreversible connectives (⊗ and ⊕) are said positives.

This distinction of connectives leads to the focalization theorem, by An-
dreoli [5], that uses the reversibility of rules to optimize proof-search, by
considering only focused proofs: i.e. linear logic cut-free proofs in sequent
calculus with a strict alternation of positive and negative clusters of rules,
where the negative, or reversible, ones are always decomposed �rst. Since
any proof admits a focused form, the theorem holds for all linear logic proofs.
These clusters of rules of a single polarity are called synthetic connectives,
and focused proofs are a fundamental step in the construction of ludics.

The abstraction of focused proofs: designs.

Ludics, introduced by J.-Y. Girard in [38] is a purely interactive approach
to logic, that has the objective of giving a new framework for logic, built
from scratch with the concept of interaction at its core. It comes from
the abstraction of focused linear logic proofs, but can be de�ned in many
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forms, especially inside game semantics, as a particular form of strategies (as
Hyland-Ong innocent strategies [44]). The notion of interaction is primitive
in the theory, in the sense that the objects of ludics, called designs, overcome
the di�erence between syntax and semantics : the structure of a design makes
explicit and de�nes its possible interactions with the other designs, and, vice-
versa, a design is de�ned by all its possible interactions, as expressed by the
separation theorem, stating that two designs that interact in the same way
with the other are the very same object.

Designs can be seen as a syntactical support for interaction, born from an
abstraction of focused Multiplicative-Additive Linear Logic (MALL) proofs
in sequent calculus, where the logical content, i.e. the formulas or types, is
forgotten in favor of addresses (sequences of natural numbers) which point
at particular places in the proof. What becomes important is the locative
structure of a proof, not the speci�c type of it, i.e. the formula of its con-
clusion. Leaving behind the syntax-semantics distinction, designs are thus
purely interactive proof-like tree structures, whose syntactical structure is
their semantics, de�ning the logical content of a design instead of its conclu-
sion.

Anticipating the background section, here is an example of how this
works. We start from a simple MALL focused proof

⋮
⊢ A1,∆1

⋮
⊢ A2,∆2

⊢ A1 ⊗A2,∆ ⊢ B,C,∆
⊢ ((A1 ⊗A2) &B)`C,∆

Being focused, A1,A2 are negative formulas ; B,C are positive formulas,
and the negative connectives & and ` are introduced at the same time,
forming a cluster of two rules of the same polarity. Going further, and
considering only positive formulas by De Morgan duality, it becomes

⋮
A�

1 ⊢∆1

⋮
A�

2 ⊢∆2

⊢ A1 ⊗A2,∆ ⊢ B,C,∆
((A1 ⊗A2)� ⊕B�) ⊗C� ⊢∆

and in ludics, forgetting about the formulas and keeping only the informa-
tion on their respective locations as addresses (sequences of natural numbers
denoted ξ1, ξ2, . . .), we have
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⋮
ξ11 ⊢∆1

⋮
ξ12 ⊢∆2

⊢ ξ1,∆ ⊢ ξ2, ξ3,∆
ξ ⊢∆

where the conclusion ξ is any arbitrary address: indeed, the type does
not matter anymore! The sub-formulas become sub-addresses, tied to the
address generating them by su�xes ; therefore ξ1, ξ2, ξ3 are generated by ξ,
and ξ11, ξ12 by ξ1, and so on. At each step the polarity of an address is
inverted; in our example the conclusion, being at the left of the deduction
symbol ⊢ is negative � indeed, it comes from the abstraction of a negative
formula � making the design itself negative; its immediate sub-addresses are,
instead, positive.

Since what matters is the structure of the proof, and we can keep track
of it through the sub-design relation, another representation for designs is a
sequence of rules, or actions, each corresponding to a logical rule with the
essential information to re-create it. For instance, the design above can be
written as:

(−, ξ,{{1},{2,3}})(+, ξ1,{1,2})
a simple alternate pair of a negative and a positive action. More speci�cally,
we have

� +,− denote the polarity of a rule;

� ξ and ξ1 are the focus of the rules, that is the address introduced
corresponding the the active formula of the rule;

� {{1},{2,3}} and {1,2} are the rami�cation of their respective rules, i.e.
the sub-addresses generated by the rule, that stand for the sub-formulas
of the conclusion, that become now the active ones.

The di�erent forms of the rami�cation, for the negative rule a set of sets of
natural numbers, and a simple set for the positive, is due to the di�erent
polarity of the rule, that allows multiple sub-formulas in its premises in the
�rst case, and only one sub-formula for each premise in the latter.

Interaction, the dynamic of ludics

Ludics, considering the structure of designs and how they interact, is actually
closer to game semantics than to proof theory. While interaction is strongly
tied to cut-elimination, it does not require formulas, as the correctness of
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its objects that is not tied to the speci�c statement found in the conclusion.
Designs can be formulated as Hyland-Ong innocent linear strategies [44],
where the notion of play expresses the dynamic of the theory, and stands
for interaction. Even the correspective of types in ludics, called behaviours,
are de�ned with respect to interaction, contrary of games in game seman-
tics: a behaviour is a set of designs closed with respect to their orthogonals,
which are the counter-designs of the set, the ones with which interaction
ends successfully, and does not diverge. Ludics is also a realization and an
expression of the Geometry of Interaction [35], a program started by Girard
with the objective to develop logic and proofs from a geometric viewpoint,
and the possibility to give a central role to the dynamic of formal objects,
instead of their content; as proof nets already do for linear logic. This pre-
sentation of logic proposes a change in the standard paradigms, and gives the
possibility to strengthen the connection between logic, game semantics, and
theory of computability, as many works, in particular by C. Faggian (with M.
Basaldella [6] and M. Piccolo [27]) and K. Terui [66], already have developed.

Interaction, as cut-elimination, starts from cuts. However, these cuts,
in standard ludics, are not internal to a design, as is the cut-rule in sequent
calculus proofs, but can only occur between two di�erent designs. A cut is
formed when two designs share a common address, but in opposite position,
thus of opposite polarity, as for instance ⊢ ξ and ξ ⊢. The closed case of
interaction corresponds to the elimination of a cut between two designs, as if
it were a cut-rule linking the two proofs; but, this kind of cut-elimination is
actually extremely counter-intutive. Indeed, we are trying to eliminate a cut
between two proofs with an opposite conclusion, that in linear logic would
correspond to considering at the same time a proof of A and A�, which is
obviously impossible, since one of the two proofs must be incorrect. However,
in ludics there are no formulas, as there are no axioms or atomic-formulas :
this entails that the meaning of �correct proofs� cannot be tied nor to the
speci�c conclusion of the proof, nor to the choice of its premises. Again,
what matters in ludics is the locative structure of the proof, and the strict
alternation of rules of opposite polarity; in this sense it is more a strategy
than a proof, and therefore closer to game semantics than sequent calculus.
To overcome the di�culties that may arise having �incorrect� proofs in a
Logical system, in place of the axioms we �nd a special rule, called daimon,
and denoted 6: the daimon let us stop proof-search at any time, by allowing
us to prove anything at will. It can interpreted also as a symbol standing
for an error, or, in game-semantical terms, a move meaning that the player
performing it is giving up, and ending the game.

To give an intuition, interaction between two designs forms a path between
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them, that visits pairs of dual actions by switching design at each step, and
�nding new pairs by passing through the premises of the action part of a
cut that has been visited; it stops if it reaches 6, meaning that interaction
has ended successfully and the designs involved are orthogonals ; otherwise
interaction diverges. An interaction path between two orthogonals designs
looks like this:

Design 1 Design 2

⊢ ξ ξ ⊢

cut

6

cut

cut
cut

Closed interaction let us de�ne the types of ludics: behaviours. Be-
haviours are sets of designs closed by bi-orthogonality, i.e. a set B of de-
signs such that B = B��. They are one of the most interesting and studied
aspects of ludics, and have multiple tools and properties at their disposal,
developed in various works (as for instance [28, 29, 30]) including the original
article by Girard, were linear logic is interpreted into ludics by interpreting
formulas into behaviours, de�ning logical operations on them corresponding
to the connectives ⊗,⊕,`,&, and proving the full and internal completeness
theorems for polarized MALL.

Process calculi

The other �eld we are going to study and hopefully advance, by forming a
connection with ludics, is the one of process calculi (or algebras). Process
calculi are a model of reactive systems, i.e. systems where objects, called
processes, react to stimuli from an external environment, which can deter-
mine their transformations; in particular, they model parallel and concurrent
computation, and consequently concurrent programming. The name �process
algebra� was �rst used by D. Milner, who introduced it due to the realiza-
tion that processes have an algebraic structure: processes can be combined
with operations to form new processes � for instance by sequential or parallel
composition � and the resulting term will behave di�erently, depending upon
the generating processes, and the kind of operation used. In this sense the
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syntax of processes is algebraic, since it is formed by basic elements and op-
erations to build new and more complex terms. For instance we can combine
the processes a.b.1 and a.c.1 obtaining:

� a.b.1 ∣ a.c.1 by parallel composition, or

� a.b.1 + a.c.1 by non-deterministic choice.

were a, b,1 are channel names, notion tied to the key concept of process
algebras, that is the one of communication.

Indeed, the heart of these systems is to specify how parallel processes
interact with each other, interaction that takes the form of communication
between processes running at the same time. Communication can happen in
various way, the most common being between channels. It often takes the
form of an exchange of information: two dual channels can synchronize dur-
ing computation, called execution, with one sending a data, and the other
receiving it, to then continue depending on the speci�cations of each process.
To give an intuition, in the process a.b.S ∣ a.b.R the pairs of dual channels
(a, a) and (b, b) (were a is the dual of a, the same for b) can synchronize
and communicate; an execution sequence performing both synchronizations
looks like this:

a.b.S ∣ a.b.R → b.S ∣ b.R → S ∣ R
Senders and receivers are the very same kind of objects, and processes consist
of channels with one or the other role, combined using the aforementioned
operations. Processes can therefore communicate via data-passing, inter-
preted as synchronized communication between agents, giving shape to their
dynamic. These ideas are at the core of the paradigm of process algebras,
which will be the focus of our work alongside ludics: Milner's Calculus of
Communicating Systems (CCS) [55].

The Calculus of Communicating Systems

Milner's original process calculus has seen many extensions during the years,
in particular the widely used π-calculus (introduced in [57, 58] by R. Milner,
J. Parrow and D. Walker) that extends standard CCS with name-passing,
allowing channels to send/receive other channel-names as data during syn-
chronization/communication. This feature gives the calculus a much greater
expressive power, making it closer to actual concurrent programming, and an
ideal model to work with, especially with the solution of practical problems
in mind, as for instance with session types [47, 64, 50], dealing with security
of communication protocols. However the nature of the problem we are going
to study requires a purely theoretical approach, letting us disregard practical



13

implementation problems; therefore, we will mostly stick to standard CCS,
that being the paradigmatic process algebras has the advantage of retain-
ing only the essential aspects of process calculi, thus giving us a simple and
elegant setting to work with, that will make a correspondence with ludics
actually more general in comparison with the more complex π-calculus.

The grammar of CCS is actually extremely simple, and consists of

� an empty process, usually denoted 0, from which all processes are built,
and that cannot communicate by itself with any other process;

� a denumerable set of channel names, denoted a, b, c, . . ., who have duals
a, b, c, . . ., that are the means by which processes communicate and are
built;

� the action-pre�x operation, that let us build processes by putting a
new channel name as a pre�x of an already existing process, as a.b.0;

� the parallel composition operation, denoted P ∣ Q, that is what enables
communication between processes, and thus makes execution a kind of
parallel computation;

� the non deterministic choice, or sum, denoted P+Q, that is an exclusive
choice, forcing us to decide with which process member of the sum we
want to communicate, discarding the other;

� the private names or hidden names operator νa, that makes all chan-
nels named a inside its scope hidden from the external environment or
context;

� and the recursive operator A(a⃗), on the parameters a⃗ ∈ A, that al-
lows recursive de�nitions of processes; sometimes appearing as !a.P ,
an exponential or replicable channel.

Communication between channels happens during execution, the reduc-
tion semantics for CCS, that makes two dual channel names, belonging to
processes in parallel composition, synchronize � intuitively meaning that they
are exchanging information � to then be consumed and let the process con-
tinue depending on its speci�cations. As we showed in the example above,
if a process P = a.b.S ∣ a.b.R, then the pair of dual channels (a, a) can syn-
chronize, generating the following reduction of the process

a.b.S ∣ a.b.R → b.S ∣ b.R
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The reduced form b.S ∣ b.R now can synchronize the pair (b, b), that have no
pre�xes blocking communication with them, and thus perform the next step

b.S ∣ b.R → S ∣ R

In the case of a non deterministic choice, execution will only keep the
processes on which we are synchronizing the two channels:

a.P +Q ∣ a.P ′ +Q′ → P ∣ P ′

Non-determinism and non-con�uence in execution

The most important fact that we have to note is that such a simple gram-
mar and reduction rule, without particular restrictions, allows execution on
CCS processes to be non-deterministic and non-con�uent. Non-determinism
comes directly from the non-deterministic choice, that, as the name suggests,
forces us to choose between two processes during execution. Instead, non-
con�uence comes from the simple fact that channel names are not unique,
and therefore we can �nd processes as

P = a.b.S ∣ a.c.Q ∣ a.bi.R

where there are multiple synchronizations available at the same time, due to
the two pairs (a, a).

In such cases there are forks in execution paths that bring the process to
di�erent reduced, and ultimately normal, forms. In our example, we have
two possibilities:

� P → b.S ∣ c.Q ∣ a.b.R, or

� P → b.S ∣ a.c.Q ∣ b.R

and only in the second case we are allowed to continue execution on the pair
(b, b), obtaining

b.S ∣ a.c.Q ∣ b.R → S ∣ a.c.Q ∣ R
while in the �rst case we have reached a normal form.

These are the most relevant properties of execution regarding the objec-
tives of our research, and what makes a Curry-Howard correspondence with
a logical system an extremely delicate matter. Indeed, more often than not,
when trying to �nd a logical model or interpretation of a process calculus into
a logical system, restrictions are imposed to the syntax of the calculus, in
order to determinize execution, also making it con�uent ; that is a necessary
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step to make execution compatible with cut-elimination, whose con�uent na-
ture cannot be changed without depriving proofs of their very meaning.

Execution will be connected to interaction of designs in ludics, through
an interpretation of the calculus into the logical system: CCS terms will be
interpreted into sets of designs, and execution sequences will correspond to
interaction paths on behaviours, with the scope in mind to gain insights of
both theories, and give another logical foundation to process algebras.

A Curry-Howard correspondence between pro-

cess algebras and ludics

The standard way to build a correspondence between a logical system and
a model of computation (in general a calculus, as CCS or the λ-calculus) is
through a syntactical translation of one system into the other. Each basic
element of the grammar of one system is translated into a basic element of
the other, and then term constructors of one system � as the introduction
rules for connectives in logic or as parallel composition, or non deterministic
choice, in process algebras � are interpreted into term constructors of the
other, thus forming a correspondence. This often takes the form of a typing of
the calculus: each elementary term of the grammar is typed by an elementary
term of the logical system (often a formula), then for each term-construction
or term-reduction operation, rules on the types are given, to form the type
of the constructed or reduced term.

In the case of a Curry-Howard correspondence the aim of the translation
is also to obtain a correspondence in meaning, as a correspondence in how
terms are used and are reduced. In the classical correspondence between
λ-calculus and intuitionistic logic, cut-elimination on proofs corresponds to
β-reduction of λ-terms. In this way, there is a match in how terms are used
in the two system, forming a strong parallelism and giving the possibility
to shift from one system to the other, and thus transfer properties of one
system into the other. Taking into account process algebras, however, there
are some intrinsic problems that hinder a clean correspondence with a logical
system, and give strong limitations when trying to match their meaning in
the above sense.

A correspondence in dynamic, rather than language

While we are trying to obtain a Curry-Howard correspondence between pro-
cess algebras, speci�cally CCS, and a logical system � ludics in our case �
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our focus is on the latter part of the correspondence, that is also the core
of a Curry-Howard correspondence: an interpretation achieving a correspon-
dence in meaning, in the sense of how the objects of the two systems are used.
In more general terms, this means a correspondence in the dynamic of the
two systems; only such a correspondence can give us the ability to transfer
not only properties, but also meaning between them, and give process calculi
another logical foundation.

To this end, our interpretation does not take the usual form of a trans-
lation, and presents a clear shift in complexity between terms of CCS �
processes � and objects of ludics � designs. Moreover, the actual translation
will only be a small part of the interpretation, that is going to be far more
complex than a simple correspondence of syntax and term-construction rules.
Indeed, CCS processes will not correspond to single designs, but to sets of
designs; meaning that to a single term of CCS are associated multiple ob-
jects in ludics, but with a well de�ned common structure. As we will see, this
is a necessary step to achieve the sought correspondence in dynamic, free of
limitations or restriction in either the syntax or execution.

Previous works with linear logic

The topic of the extension of the Curry-Howard correspondence outside the
intuitionistic and functional world is not a new trend in research, and also our
speci�c case regarding process algebras have already been studied in various
works. The goal of the research in this direction is to �nd a proper Curry-
Howard counterpart for models of concurrent and parallel computation, in
particular CCS and the π-calculus; while the π-calculus has more expressive
power, as we mentioned, for its essential and paradigmatic nature, CCS has
enough reasons to be considered as well.

Linear logic has been the favorite target for such a correspondence, being
considered a particularly re�ned interactive system, giving a solid ground to
form connections with process algebras, whose main feature is the interaction
between a process and the environment. Indeed, what matters in process
algebras is not much the result of computation, but what happens to get
there, all the intermediate steps, and thus which channels synchronize, and
what data is passed or received during communication. A good example is
the work of Kobayashi, Saito and Sumii on session types [50], where there is a
strong focus on ensuring communication on speci�c channels, and thus that
certain data will actually be passed and received from a process to another;
in this case, the �nal result of the reduction process does not matter at all,
if it is unable to pass through some speci�c steps �rst. To this end, of the
main tools at the disposal of linear logic to properly represent an interactive
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system, proof nets are the most e�ective ones.
Proof nets [40] are a purely geometrical syntax for proofs of Multiplicative

Exponential Linear Logic (MELL), with some possible, though not de�ni-
tive, extensions to additive connectives, that are surprisingly hard to deal
with in a geometrical representation. The aim of proof nets is to give a more
general syntax for linear logic proofs, able to overcome the irrelevant dif-
ferences found in sequent calculus: provable formulas admit multiple equiv-
alent proofs, where the only di�erence lies in the order in which rules are
applied. With proof nets we can abstract from sequentiality and obtain a
single form for all equivalent proofs in sequent calculus, with a simple, local,
cut-elimination procedure.

Many approaches have related models of concurrency to linear logic fo-
cusing on the interpretation of processes as proof nets, as presented �rst by
Abramsky [1] and Bellin with Scott [13], then re�ned by Be�ara [7]. The
systems born from these works are based on the correspondence between
cut elimination and the equivalent of reduction/normalization on the side of
process algebras, i.e. execution; indeed proof nets have similar dynamics to
process calculi, being cut elimination a local (and asynchronous) procedure,
which suggests a close relation with parallel computation.

The intrinsic di�culties of cut-elimination

A few later works in this direction, by E. Be�ara and V. Mogbil [12] for
CCS, then re�ned in [9], and by T. Ehrhard and O. Laurent [22] for the
π-calculus, stress the di�culties with the usual attempts with linear logic
and proof nets: the main issue involved in �nding a typing for such calculi
is a proper representation of their natural non con�uence lost in the corre-
spondence because of the con�uent nature of normalization of proofs, which
e�ectively restrains a process to functional behaviour. In order to form a cor-
respondence between execution and cut-elimination, the non-con�uent traits
of the �rst must be repressed in some way, often by limiting the syntax of
processes, or by determinizing execution.

Differential proof nets. In the work by Ehrhard and Laurent dif-
ferential proof nets are used as the target into which translate a version of
the π-calculus, continuing the ideas and results of Honda and Laurent found
in [42], where the π-calculus is translated into polarized linear logic � linear
logic under focusing discipline. Di�erential linear logic is non determinis-
tic, as it admits sums of proofs, and the core idea of their translation is to
interpret the parallel composition as a cut between a contraction and a co-
contraction (a novelty of di�erential linear logic) link, which allows to have
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several premises connected (then contracted), as outputs or inputs, depend-
ing on their polarity, respectively negative and positive.

As a downside, the translation accepts only replicable receiving channels,
and it is not modular, i.e. the parallel composition of processes, which al-
lows interaction between them, cannot be represented by a combination of
their proof nets interpretation; moreover, since a process corresponds to a
di�erential proof net, while it admits a cut-elimination path for each non
deterministic choice via the sum of proofs, the work does not consider the
non-con�uence of execution, that cannot be represented by the still con�u-
ent cut-elimination. Nevertheless, though the π-calculus already have various
translations into several kind of nets (as in [11] by Be�ara and Maurel), dif-
ferential nets provide a solid logical ground to the calculus, and are equipped
with a denotational semantics, also model of the λ-calculus.

Scheduling of execution. Another interesting approach, and start-
ing point of this thesis, are the ones of Mogbil and Be�ara [12] and of Bef-
fara alone [9]. Limiting the context to the multiplicative fragment of CCS
(MCCS), that is without non-deterministic choice and recursive de�nitions,
the idea of their work consists in a shift in the correspondence from �proofs as
processes� to �proofs as executions�. The reason of this shift is a di�erence
in meaning between proofs and processes; where the meaning of proofs is
its normal form reached by cut elimination, that does not a�ect the conclu-
sion of the proof, while the meaning of a process is not one of its multiple
irreducible forms, generated by non-con�uent execution sequences, but the
communications that happen, in the form of synchronizations and exchange
of information between channels, at each step of the execution. Indeed,
every step counts, since depending on the context at each intermediate re-
duced form of a process a permanent fork in the sequence might be generated.
Therefore the dynamic of a process calculus, intended as how processes are
used, interacts with each other, and transform, lies in this complex kind of
behaviour, that a con�uent procedure as cut elimination, even if possibly
non deterministic, cannot completely represent. Cut elimination does not
a�ect the formula in the conclusion of a proof (its type), and no matter the
path taken � that is which cut is eliminated �rst � the �nal result is the
same; instead, regarding processes, each execution step should not preserve
the meaning of the original process, and thus its type, since at any single exe-
cution step the possible normal forms reachable by the process might change,
by permanently excluding some of the ones of the previous form.

Being cut elimination con�uent even in proof nets, the approach of [12]
attempts to �nd a solution via the scheduling of execution, i.e. following an
execution plan. To each process is associated a proof net, and by choosing in
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advance which execution will take place in the process, a deterministic path
is chosen, therefore in the normalization of its proof-net counterpart nothing
is lost: the result is that for every deadlock free execution on a process P
a corresponding proof net can be build whose cut elimination corresponds
to the chosen execution. The downside of this approach is that a process
does not have a determined type, which depends mostly on the particular
execution, and composition with the environment. In [9] some improvements
are made, where the typing of a process is �xed by some typing rules in such
a way that to each MCCS process P is associated a MLL proof net [P ],
by a translation of the MCCS syntax and construction rules. Then, the
scheduling of the execution is clearly separated from the type of the process,
since at each execution, say P → P ′, is associated the linear implication
[P ] ⊸ [P ′], which, by construction, is still a correct proof net.

However the same drawbacks apply to the re�ned results, since execu-
tion is made con�uent by determining in advance which step is going to be
performed, and then translated into linear logic. While each process does
correspond to a single proof net, the core result of the translation, that is the
correspondence between cut-elimination and execution, is fragmented into
multiple types : to each execution sequence corresponds a di�erent proof-net,
that to be built require to know in advance the form of the process after the
execution sequence.

Relations between process calculi and ludics

On of the goals of this work is to try to obtain results similar to the ones
found in the above mentioned works, while overcoming the limitations of
linear logic and proof nets, in particular with respect to non-con�uence, by
using a logical system with interaction at its core as ludics. Indeed, while
non-determinism can be modeled in many ways (by sums in di�erential lin-
ear logic for instance), the non-con�uence of processes cannot be properly
represented by normalization on proofs for its very (con�uent) nature: this
gap in meaning cannot be closed inside the framework of linear logic.

Recent works relating ludics with process calculi are in particular by C.
Faggian: �rst we have ludics net, along with F. Maurel [17], then, with M.
Piccolo, ludics as a model for the �nitary and linear π-calculus [26] and an
interpretation of linear strategies in a particular class of event structures [27],
a model of concurrent calculi by Winskel (introduced in [69]). These studies
underline a strong connection between process algebras and ludics, presented
as game semantics. What standard ludics is lacking is replication and thus
possibly non determinism in interaction (each address, being an unique place
in a proof, is itself unique), and one thing that C. Faggian and M. Piccolo
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aim at gaining from this connection is a way to represent replication, and
non determinism, inside ludics.

Event structures also have a close relation with our thesis, as Winskel
showed they are a model for CCS-like calculi in [68]; moreover our interpre-
tation actually represent in ludics the relations giving the structure to the
set of events that de�nes Winskel's model.

Ludics as a π-calculus model. In [26] ludics is used to model
the π-calculus, where processes are interpreted as linear strategies, but the
calculus is restricted to its �nitary and linear fragment, along with other
constraints (about internal mobility on names, asynchrony, and locality of
input-outputs), which heavily restrict its non-determinism; moreover the lu-
dics model does not represent execution, i.e. interaction in ludics does not
correspond to execution in the calculus, since it holds a con�uent subject
reduction property: from the ludics interpretation JP K of a process P , it
holds that if P → Q (there is an execution from P to Q), JP K = JQK. As we
already stressed, if we are faithful to the meaning of processes, an execution
step should not preserve the interpretation of a process.

Ludics outside linearity. In Ludics with repetitions [6] is built a ver-
sion of ludics formulated in game semantics-terms allowing repetitions of ad-
dresses, where silent actions are added to make interaction non-deterministic
but consistent with the internal and full completeness theorems of ludics
(found in [60, 41, 38]). The repetition of addresses makes ludics non-linear
and requires duplication of designs during interaction. The drawback of let-
ting addresses and rules on them be repeated is that the separation theorem
does not hold anymore.

In Event structures and linear strategies [27], focused on representing lin-
ear strategies as confusion free event structures, non determinism is added to
ludics, since these latter have controlled non-deterministic traits. Based on
the πI-calculus typing by Varacca and Yoshida presented in [67], it starts
from the intuition, found in [43], that (typed) processes can be seen as
Hyland-Ong innocent strategies, and from other works describing game se-
mantical objects as event structures ([45], [2]): non determinism is repre-
sented as non-deterministic sums, and composition of strategies is repre-
sented as parallel composition of event structures, thus allowing parallelism
and modularity.

Still, the property of confusion freedom is a not an irrelevant restriction
with respect to process behaviour (event structure can be seen as processes,
being a model of CCS and the πI-calculus [63]), since it is a generalization
of con�uence to non-deterministic systems. It restricts processes to those
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where each non deterministic choice is local, i.e. internal to one process, and
independent by the environment; what we want to achieve, instead, is an
interpretation of unrestricted process behaviour into ludics.

Computational ludics. Another work in this direction is Terui's com-
putational ludics [66]. It consists in a reformulation of ludics in terms more
suited to deal with and describe computational power and complexity of func-
tions. It is presented in a π-calculus-like syntax, with both a β-reduction
and Krivine's abstract machine-style normalization. In this setting ludics is
naturally non-linear, and admits cuts inside designs as a construction rule
contrary to standard designs, that being focused cut-free MALL proofs, can
generate a cut only in combination with an orthogonal design. Compu-
tational ludics let us de�ne by recursion in�nite design using �nite design
generators and perform interaction on them as a �nite procedure. Compu-
tational designs are then related to various complexity classes, depending on
the features we consider (for example cut-free or with internal cuts).

Problems of exponentials in ludics

On our side, we start our work with the standard syntax of ludics. This
syntax is linear, does not allow replication of addresses and does not use
exponentials, therefore it is a more solid ground to build our interpretation.
Both computational ludics and ludics with repetitions have drawbacks that
do not allow us to achieve the complete correspondence in dynamics that we
are seeking; we will see later why the syntax of computational ludics hinders
our interpretation of CCS, and why the modi�ed interaction of ludics with
repetitions does not �t our needs, not counting the fact that in the latter the
separation theorem1 does not hold anymore.

In linear logic to recover the expressive power of the lost structural rules
� i.e. weakening and contraction � two unary connectives dual of each other,
called exponentials, are added: ! (bang, or of course) and ? (why not? ). When
used before a formula they allow the use of structural rules on that formula;
for !A when in the premises (left of ⊢), for ?A when in the conclusion part
(right of ⊢). In this way formulas with exponentials are replicable and non-
linear resources. Since ludics is based on MALL, it does not admit any kind
of exponentials; furthermore, it would be against ludics theoretical founda-
tion, that is to only keep the geometrical structure of the proof, by relations
between locations in the proof itself: if an address is a particular place in a
proof, being able to replicate it would not make any sense. However, without

1We mentioned it above: it states that two designs with the very same interactions are
the very same object.
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extending ludics to non-linearity, representing processes de�ned by recursion
is simply impossible, as MALL has a rather weak expressive power by itself.
If a design, or a part of a design, corresponds to a recursive part of a process,
i.e. a program that calls it self arbitrarily many times, this design must be
able to replicate itself or some of its rules, and thus addresses, at least during
interaction.

We will stumble in this theoretical contradiction when trying to deal with
recursion and replication, and attempt to �nd di�erent solutions than to just
switch to one of the non-linear syntax available for ludics, with the goal
in mind to keep the standard ludics interaction for its intrinsic linear and
resource-sensitive nature.

Main contributions of the thesis

Translating processes into ludics. Our interpretation goes somewhat
in the opposite direction of [27], by representing the causal and con�ict re-
lation of event structures into ludics, using carefully de�ned sets of designs,
through a ludics technique inspired by Christophe Fouqueré and Myriam
Quatrini, called pruning. Limiting our setting to multiplicative CCS at �rst
(as in [9]), and then to replication-free CCS, the pruning lets us easily repre-
sent inside ludics the structure of replication-free processes (or, equivalently,
event structures): the partial order between channels generated by the pre-
�x operation; the parallel composition; and any exclusive relation between
channels or processes, as the non deterministic choice, or the con�ict be-
tween synchronizable pairs that share the same channel name occurrence, as
we saw in the example about non con�uence. Adding an assignment function
associating elements of a process P (channel names, synchronizations, etc.)
to addresses of the designs we built, leads us to associate to a replication-
free CCS process P a set of design, that then is closed by bi-orthogonality,
obtaining a behaviour, that together with the assignment function becomes
the interpretation in ludics of P , denoted JP K.

A correspondence between execution and interaction. The re-
lations giving structure to a process are indirectly coded into designs along
with the channel name occurrences used to built it; then, these designs are
put together in a set, in such a way that the full relations will appear and be
respected during interaction with the orthogonal set. Then this set is closed
by bi-orthogonality, obtaining a behaviour: in this way the full dynamic of
processes can be represented by interaction on a type of ludics. To each inter-
action path in its ludical interpretation JP K (between JP K and its orthogonal)
is associated an execution sequence on a replication-free CCS process P , in
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such a way that to each interaction is associated exactly one actually possible
execution on P , and each execution is associated to at least one interac-
tion. This correspondence takes into account each singular step of execution,
thus, from an interaction we can recover the exact sequence and order of
the synchronized pairs of channels, as well as the channel names themselves,
therefore we are able to read-back step-by-step the execution of the process
from any of the interactions to which it is associated. The correspondence
we build forms a connection between the dynamics of the two systems, and
to each process is associated a single interpretation, that is a well structured
object, and moreover a type of ludics. This interpretation is able to represent
through interaction the whole range of executions on the process, embracing
both the non-determinism and non-con�uence of the dynamic of CCS. It
is also a connection in meaning between interaction and execution: as the
meaning of execution are its intermediate steps, the meaning of interaction
is the path it takes to get to a successful termination; indeed, the result of
interaction would be otherwise completely un-informative, as it only tell us
�convergence� with 6 or �divergence�.

Partial modularity of the interpretation. By modifying and adapt-
ing to our interpretation the operation ⊗ on behaviours, that corresponds to
the linear logic tensor ⊗, we try to give modularity to the interpretation, in
such a way that the interpretation JP ∣ QK of two processes in parallel com-
position is obtainable by an operation on their respective interpretations, i.e.
that

JP ∣ QK = JP K � JQK

This is partially achieved, since in the trivial case where there is no com-
munication between P and Q, � is exactly ⊗. However, in a general case
where P and Q can synchronize through some channels, the operation is
much more complex and arti�cial, going beyond a simple ludical operation
on behaviours. We must act on the set of designs generating the behaviours,
however it is possible to still keep the basic operation ⊙ on pairs of designs,
called merging, that is used to de�ne ⊗.

A reduction on the interpretation. We deepen the connection in
dynamic between processes and behaviours by de�ning a reduction on JP K.
Note that a standard subject reduction property stating that the interpre-
tation of a process is una�ected by execution must not hold, if we want to
be faithful to the meaning of a process. Therefore we de�ne an operation
based on ludics' projection on behaviours (already de�ned by Girard in [38])
that reduces JP K to (JP K)u, matching execution on a given synchronization
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u = (a, a). We thus obtain the interpretation of the process P after the
execution step on the chosen synchronization u, in such a way that

P →u P ′

JP K↝u (JP K)u = JP ′K

J−K J−K

By extending this result to execution sequences leading to the empty
process, that we denote 1 instead of 0, we obtain that if P →∗ 1 for an
execution sequence ∗, then the reduction on JP K by ∗ results in the design

(+, ξ,∅)
⊢ ξ

which is the design called One, whose generated behaviour corresponds to
the linear logic multiplicative unit 1, giving us good reasons to denote the
empty process 1 instead of 0.

Deadlock freedom. We can give a nice su�cient condition for deadlock-
freedom of a process by checking a property of ludics called incarnation of
JP K, a property of behaviours that tells us which are the parts of its designs
actually visited by interaction (with the orthogonal behaviour). Designs that
are fully visited are material, i.e. they are equal to their incarnation: if this
is the case in JP K, then we can conclude that P is deadlock-free. This prop-
erty holds for the correspondence between execution and interaction: if the
whole behaviour JP K is accessible during interaction, then so is the process
P during execution.

Attempted extension to recursive definitions. At last we point at
some possible directions that could lead to an extension of ludics able to both
represent replication in CCS and respect our correspondence in dynamic. At
�rst we hint at a possible solution by taking the controlled replication in the
typing of Sangiorgi's πI-calculus by Varacca and Yoshida [67]: the restric-
tions there imposed let us have a still expressive replication, but much easier
to represent � by using in�nite sequences of actions instead of replication of
addresses.

Another possible route is to just reformulate the whole interpretation into
computational ludics, having thus available �nite design generators, that can
naturally represent recursive de�nition of processes, or programs in general,
being introduced by Terui with that goal in mind. However, the syntax of
computational ludics does not �t our interpretation at all; many problems
arise in the translation of processes into sets of designs, and a clear simple
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correspondence between elements of the process and addresses is lost. There-
fore, what we attempt to do is to rather reformulate �nite design generators
into the standard syntax of ludics with the smallest extension possible, by in-
troducing special exponential addresses denoted ξ∗, ζ∗, . . ., that are replicated
in the context after a rule is performed on them. However this direction of
research is still in a very early stage, and needs further study to be evaluated
and bring solid results.

Outline

� In chapter 2 and chapter 3 we present the necessary background
notions, and present in detail linear logic, ludics, and process algebras,
with particular attention to CCS. We also give a formal de�nition of
event structure, that we will mention later in the thesis.

� With chapter 4 we start our original work. It is the central chapter of
our interpretation of CCS into ludics: in the �rst part it shows, inside
the limited setting of MCCS, how to carry out the translation of pro-
cesses �rst into a graph resembling event structures, to aid some proofs
and intuitions with a geometrical representation of a process, then into
sets of designs. In the second part we de�ne a correspondence between
execution and interaction, and prove the main theorem of the chapter
stating that the interpretation in ludics of a process characterizes all
its executions.

� In the �rst part of chapter 5 we build the machinery necessary to
de�ne the operation �, that will interpret parallel composition and
make the translation modular; then we prove a theorem stating that
it achieves its objective. The second part is dedicated to de�ning the
reduction on the interpretation, and properties about deadlocks and
deadlock freedom.

� In chapter 6 we show how to extend the interpretation to non de-
terministic choices and the hidden name operator ν, while preserving
the previous results. Then we explore the extensions of ludics to non-
linearity, as computational ludics and ludics with repetitions, and how
we could interpret recursive de�nitions of CCS processes to make them
compatible with our interpretation and its goals, by suggesting some
research directions and future works about exponentials in standard
ludics.



26

� In chapter 7 we show some relations between our interpretation and
other works. We start with a short presentation of [9], one of the
starting points of this thesis, to see what we have gained with our in-
terpretation; then we try to apply our results also to session types, in
particular to a work by Kobayashi, Saito, and Sumii [50], despite being
in the more complex setting of the π-calculus. At last we point out
the obvious relations with event structures, and hint at some connec-
tions with the work of Faggian and Piccolo about confusion-free event
structures as linear strategies [27], and how our interpretation could be
useful there.



2. Linear Logic and Ludics

We start with a short introduction to linear logic [33], the system which gave
rise to ludics, as an abstraction of its multiplicative-additive sequent calculus
proofs. We will de�ne the standard sequent calculus for linear logic, the role
of the exponentials, as well as the polarization of connectives, fundamental
for the focusing (or focalization) of proofs, necessary to link linear logic proofs
to game semantics, in which ludics can be formulated. We will also spend a
few words on the geometrical representation of linear logic given by proof-
nets, which are widely used in various works related to ours, mostly about
translations of process calculi into linear logic.

2.1 Linear Logic

2.1.1 The role of structural rules

Linear logic1 focuses on the elimination of the structural rules of sequent
calculus, eventually followed by their controlled recovery. This control makes
linear logic resources-sensitive, while keeping the same distinctions of intu-
itionistic logic and the involutive negation of classical logic, that makes a
double negation equal to no negation, i.e. ¬¬A ≡ A.

The structural rules in question are contraction and weakening:

Contraction
Γ,A,A ⊢∆

C-L
Γ,A ⊢∆

Γ ⊢ A,A,∆
C-R

Γ,A ⊢ A,∆

Weakening
Γ ⊢∆

W-L
Γ,A ⊢∆

Γ ⊢∆
W-R

Γ ⊢ A,∆

1We assume some knowledge of classical (LK) and intuitionistic (LJ) sequent calculus,
as well as the notion of sequent of formulas.

27
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where Γ and ∆ are multisets of formulas, and Γ ⊢∆ a sequent.
The elimination of the structural rules has as a consequence the duplica-

tion of the connectives ∧ and ∨ in, respectively & (with)/⊗ (tensor); and `
(par)/⊕ (plus), depending on the choice of presentation: additive or multi-
plicative. The two presentations of the rules are the following

Additive

∧ rules:
Γ,Ai ⊢∆

i ∈ {0,1}
Γ,A0 ∧A1 ⊢∆

Γ ⊢ A0,∆ Γ ⊢ A1,∆

Γ ⊢ A0 ∧A1,∆

∨ rules:
Γ ⊢ Ai,∆

i ∈ {0,1}
Γ ⊢ A0 ∨A1,∆

Γ,A0 ⊢∆ Γ,A1 ⊢∆

Γ ⊢ A0 ∨A1,∆

Multiplicative

∧ rules:
Γ,A0,A1 ⊢∆

∧-L
Γ,A0 ∧A1 ⊢∆

Γ ⊢ A0,∆ Γ′ ⊢ A1,∆′
∧-R

Γ,Γ′ ⊢ A0 ∧A1,∆,∆′

∨ rules:
Γ ⊢ A0,A1,∆ ∨-R

Γ ⊢ A0 ∨A1,∆

Γ,A0 ⊢∆ Γ′,A1 ⊢∆′
∨-L

Γ,Γ′ ⊢ A0 ∨A1,∆,∆′

The additive connectives depend on the contexts, since the context of
the conclusion needs to be same to the context of the premises. The mul-
tiplicative connectives, instead, the context of both premises is kept in the
conclusion. Additive and multiplicative connectives are equivalent in classical
logic, but only modulo the structural rules. For instance:

Γ ⊢ A0,∆ Γ ⊢ A1,∆

Γ,Γ ⊢ A0 ∧A1,∆,∆

Γ ⊢ A0 ∧A1,∆

where there are multiple contraction rules at the end, on Γ and ∆. With-
out contraction and weakening this equivalence is lost; ∧ is split in multi-
plicative ⊗ and additive &, and ∨ in multiplicative ` and additive ⊕. By
De-Morgan duality, we only su�ce one of the right/left rules to obtain the
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other; this let us formulate the sequent calculus with everything on the right,
in the following way:

Additives

⊢ Ai,Γ
i ∈ {0,1}

⊢ A0 ⊕A1,Γ

⊢ A0,Γ ⊢ A1,Γ

⊢ A0 &A1,Γ

Multiplicatives

⊢ A0,Γ1 ⊢ A1,Γ2

⊢ A0 ⊗A1,Γ1,Γ2

⊢ A0,A1,Γ

⊢ A0 `A1,Γ

Along the connectives, even their respective units (the neutral elements)
⊺,� are split, in ⊺/1 and �/0, where each unit is paired to the respective
connective:

� � to `.
� 1 to ⊗.

� 0 to ⊕.

� ⊺ to &.

Being the neutral element, we have A⊗ 1 ≡ A, A` � ≡ A, etc.
The rules for units are:

Units ⊢ 1
⊢ Γ

⊢ �,Γ ⊢ ⊺,Γ
There is no rule for 0.

In the setting we have now introduced negation, noted A� for a formula
A is de�ned as he De Morgan normal form of A, de�ned through the follow-
ing set of equivalences, which match multiplicative with multiplicative, and
additive with additive:

(A⊗B)� ⊣⊢ (A�)` (B�); (A⊕B)� ⊣⊢ (A�) & (B�);

1� ⊣⊢ �; ⊺� ⊣⊢ 0.

We call A� the dual of A. Negation is involutive, i.e. A�� ≡ A, and we have
that A ⊢ B ≡ ⊢ A�,B, contrary to intuitionism, where there is a di�erence
between sides (inputs and outputs). Nevertheless, linear logic is still able to
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make the more re�ned distinctions typical of intuitionistic logic, as ⊢ A`A�

is provable, but ⊢ A⊕A� is not, maintaining the disjunction property at the
same time as the involutive negation. Aware of this di�erence, we can now
de�ne the linear implication, A⊸ B, as A� `B, opposed to A� ⊕B.

The last rules we need to add to our sequent calculus are the Axiom and
Cut rule.

Axiom ⊢ A,A� Cut
⊢ A,Γ1 ⊢ A�,Γ2

⊢ Γ1,Γ2

Note that the cut rule is essentially the same as a multiplicative ⊗ rule,
and the axiom rule has no hidden weakening, contrary to the calculus LK.
Using the cut rule, it is easy to see how linear logic treats formulas as re-
sources.

For example:

Γ1 ⊢ A� `B

Γ2 ⊢ A ⊢ B�,B

Γ2 ⊢ A⊗B�,B

Γ1,Γ2 ⊢ B

To obtain B one instance of A is used, in A ⊢ B (which becomes ⊢ A�`B).
If we had, instead, A,A ⊢ B, contraction would let us obtain B with only
one instance of A.

The lack of structural rules heavily hinders the expressiveness of linear
logic; to recover this lost power they are added back to the calculus, but in
a particular controlled setting through the exponentials ! and ?.

2.1.2 The exponentials

The exponentials are two modalities added to the calculus (in the form of
unary connectives): ! (of course, or bang) and its dual ? (why not); so
(?A)� ≡ !A�. Their purprose is to note that a formula is considered as if
it were derived in a classical context, or environment; i.e a context with
unlimited resources. This allows the use of weakening and contraction on
such formulas, since they can potentially be obtained an arbitrary amount
of times. Therefore, the structural rules hold for the exponentials:

⊢ ?A, ?A,Γ

⊢ ?A,Γ

⊢ Γ

⊢ ?A,Γ
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Formulas marked with a modality can be used as many times as one likes,
and introduced as context of a sequent. The rules for their introduction are:

Dereliction
⊢ Γ,A

⊢ Γ, ?A
Promotion

⊢ ?Γ,A

⊢ ?Γ, !A

Note that a ! can only be introduced in a interrogated context. Indeed,
another way to present the exponentials is via an underlining of formulas,
as in A, which means that the formula is treated as a formula of classical
logic. In this setting the dereliction is allowed only on underlined formulas,
and the meaning of the promotion is immediately clear: the rule, which let
us use a formula as many times as we want, is possible only in an underlined
(i.e. resources-free) context, because if Γ ⊢ A, and Γ can be used repeatedly,
then, and only then, we can obtain A as many times as we want.

Remark 2.1.1. Adding the exponentials increases the complexity of linear
logic proof-search, making it undecidable.

2.1.3 Polarized connectives

Proof-search motivated reasons (especially the focalization theorem [5]) gave
rise to the identi�cation of other kinds of properties of linear logic connec-
tives, beside the multiplicative-additive characterization. This let us group
the connectives regarding their polarity: positive or negative.

Negatives {`,&,∀} are the connectives which leave no choice to the rule
to apply, in a proof-search strategy; when they are the principal connective of
a formula, we are forced to apply the next rule on them. Each occurrence of a
negative rule can be read bottom-up, and does not in�uence the other rules:
a negative rule can always be the last move of the proof. Negative connectives
are thus: invertible; deterministic; passive; or, in game semantical terms, an
opponent move, made from an internal choice.

For the same reasons, the quanti�er ∀ can also be considered negative,
even if we have not introduced quanti�ers in the calculus. Dually,

Positives {⊕,⊗,∃} are the connectives which do not determine univo-
cally the �rst move to apply in a proof-search, when they are the principal
connective of the formula. It can be due to many choices of repartition of
context (in the ⊗ case), or the rule itself (for example A⊕B can be obtained
from either A or B, but we can't know which on we need to carry out a
proof). Positive connectives are: irreversible; non-deterministic; active; or a
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move up to the player, which requires an external choice.

Let us further explore the reasons of this grouping. At �rst, we can note
that the dual of a negative is positive and vice-versa: the linear negation
� can invert the polarity of a formula. Moreover, connectives of the same
polarity commute, leading also to distributivity as a particular case, (for
instance(B⊕C)⊗A ≡ (A⊗B)⊕(A⊗C)) making possible to consider clusters
of rules of the same polarity as a single connective (or synthetic rule),
since the order of application of rules of the same polarity does not matter.

Indeed, the following sequents are easily provable:

⊢ (A⊗ (B ⊕C))�, (A⊗B) ⊕ (A⊗C)
and

⊢ ((A⊗B) ⊕ (A⊗C))�,A⊗ (B ⊕C).
Since negatives are reversible � we can derive ⊢ Γ,A,B from ⊢ Γ,A`B,

and ⊢ A,Γ and ⊢ B,Γ from ⊢ A&B,Γ � we lose nothing in a proof-search
strategy by applying the rule as soon as the connective in question is encoun-
tered (we have only one way to apply the rule). The sub-formulas A,B can
then be sent in di�erent premises when decomposing a context-sensitive rule
as the ⊗. This property is at the center of the focused discipline in proof-
search, as seen in Andreoli's focalization theorem [5] (of which we will give
some hints), which gives priority to the decomposition of reversible rules.
Ludics will arise from this focused discipline and use of synthetic rules, by
forgetting the type of a proof (the formulas in its conclusion and premises).

A last remark must be made on ! and ?. There is not a general consensus
on the polarity of the exponentials; the problem being nor the ? nor the !
can be considered negative. At �rst, the ! might seem invertible, since:

⊢ ?Γ, !A

⊢ A�,A

⊢ ?A� = (!A)�,A
cut

⊢ ?Γ,A

However, ! is not deterministic and cannot be assumed to be the last rule of
a proof, during proof-search, making the ! not negative. Indeed if we have

⊢ A�,A

⊢ ?A�,A

⊢ ?A�, !A ⊢ 1
⊗

⊢ ?A� ⊗ 1, !A

clearly !A cannot be decomposed �rst, going bottom-up, since the context
is not under ?, making ! not negative; while ? is clearly not-invertible as well.
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2.1.4 Proof nets

Proof nets were introduced to have a more geometrical presentation of proof,
without the constraint of a sequential representation, where we are often
forced to choose irrelevant orders of application of rules, and therefore dif-
ferentiate proofs which are essentially the same. Their aim is to abstract
from sequentiality, make cut-elimination a local procedure, and to explicit
the relations between formulas in a proof (axiom/premise and conclusion)
by drawing links and giving importance to their place in the proof. Proof
nets work well in multiplicative linear logic (MLL) while they struggle try-
ing to deal with additive connectives in a natural way. We will give a short
presentation, since variants of them have been used to translate either the
π-calculus (in [22]) or CCS (in [9]), and are widely used in linear logic.

Proof nets are s particular case of proof structure, which are directed
graphs where the nodes are labeled with formulas (we assume a calculus
formulated on the right), and links between them (the edges) are introduced
by the following rules:

Axiom link

A� A

Cut

A A�

The axiom has no premise and two conclusions (and mimic the ⊢ A,A�

of the calculus), while the cut has two premises and no conclusion. Then we
have the rules for ⊗ and `, which are simple binary-links

⊗ link

A B

A⊗B

` link

A B

A`B

De�nition 2.1.2. A proof structure is a �nite set of closed formulas ofMLL
and axioms, cut, ⊗ or ` links between them such that:

� Every formula is conclusion of exactly one link.

� Every formula is premise of at most one link.
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Formulas which are not premise of any link are called conclusions.

We have de�ned how to build a proof structure, the next step is to describe
normalization on them: since it is a local reduction procedure, even if the
proof structure is not a proof net, it still holds. Proof nets are indeed proof
structures satisfying speci�c correctness criteria, which assure us that the
structure in question is indeed a correct proof in MLL, and sequentializable,
i.e. can be translated to one or more correct sequent calculus proofs, since
we are abstracting from irrelevant orders of application of rules.

Normalization

Firstly, we can note that the translation from sequent calculus to proof struc-
ture is very straightforward. If we have a sequent calculus proof of ⊢ Γ, then
we can build a proof structure step-by-step, using an inductive de�nition:

� Axiom ⊢ A,A�, is just a proof structure with an axiom link between
A and A�.

� Cut and ⊗ � remember that the cut is a particular case of ⊗ � have as
premises ⊢ A,Γ, ⊢ B,∆ (A�,∆ for the cut), and conclusion ⊢ A⊗B,Γ,∆
(⊢ Γ,∆). For inductive hypothesis we have two proof structure of
respective conclusions A,Γ and B,∆ (A�,∆), and using the respective
link (⊗ or cut) we obtain a proof structure with the same conclusion.

� ` goes from ⊢ A,B,Γ to ⊢ A`B,Γ. For inductive hypothesis we have
a proof structure of conclusion A and B, thus using a ` link between
them we obtain the desired proof structure.

The di�erence between ⊗ and ` is that one is done between the conclusions
of two di�erent proof nets, the other between two conclusions of the same
proof net. This distinction will make sense once the correctness criteria for
proof structure are introduced. Indeed they are both a binary link where the
only di�erence lies in the label; however they are treated di�erently when
checking the correctness of a proof structure. The normalization procedure
is extremely simple, and consists of only two cases:

1. Cut with an axiom link:

A� AA′ ⇒ A
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2. Cut between ⊗ and `.
A B

A⊗B

B� A�

B� `A� ⇒

A B B� A�

The normalization procedure for MLL proof structures is con�uent and
verify the Church-Rosser property2.

Proof-nets are then de�ned as proof structures satisfying certain correct-
ness criteria (the mostly applied is the Danos-Regnier criterion, [21]), that
are needed to make sure that a proof net is sequentializable. Indeed, proof
nets are supposed to be proof structures corresponding to sequent calculus
proofs in MLL. So, we stumble upon the problem of sequentialization: a
proof structure can have many conclusions, but it does not tell us which is
the last rule of the proof. Being sequentializable means that we are able to
built a proof structure following a sequential order on the rules, order which
must correspond to the rules of the sequent calculus.

To check the correctness of proof structures we need the notion of switch-
ing :

De�nition 2.1.3. Let P be a proof-structure, and L a ` link. A switching
on L is a choice left or right on the link, which keeps an edge of the link
while erasing the other. The resulting links are the following:

Left switch

l
A B

A`B

Right switch

r
A B

A`B

Then, we have that

De�nition 2.1.4 (Proof net). A proof structure P is correct if for every
choice of switching S on ` links of P, the resulting graph is connected and
acyclic. A correct proof structure is a proof net.

2It is very easy to check the property. For reference, see [40].
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To end this section we state Girard's sequentialization theorem [40], skip-
ping its proof.

Theorem 2.1.5. A proof net is sequentializable, i.e. it correspond to the
translation of at least one sequent calculus proof in MLL.

When introducing ludics, we will get back to linear logic to present the
focused discipline for proofs, a proof-search algorithm based on polarization
and alternation of positive and negative rules. Focused proofs form a clear
connection with game semantics and its objects, called strategies, that are
an alternation of a Player (a positive agent) and an Opponent (a negative
agent), in which the objects of ludics, designs, can be de�ned.
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2.2 Ludics

Ludics can be described as a purely interactive approach to logic. It is a
research program started by Girard3 to give a new foundation to logic based
on the core notion of interaction. Indeed, the theory itself was developed
inside the setting of Geometry of Interaction (GOI) whose objective is to
give an account of the dynamics of proofs (in logic) � i.e. the normalization
process � to be able to consider proofs through a notion of duality, and
interaction. The GOI �nds so a realization in ludics, as an approach to logic
where interaction is its core notion.

Interaction is the equivalent of cut-elimination for the objects of ludics,
called designs ; the dynamic which let them combine and transform. However,
unlike cut elimination for proofs in sequent calculus, it is the very founding
notion of ludics, which means that designs are only a syntactical support
for this notion: their meaning lies in all the possible interactions with the
other designs; therefore they keep as information only what is essential for
interaction to be carried out. Only once we put together the syntactical
de�nition of designs together with the notion of interaction we can recover
the usual objects of logic. This new and di�erent approach makes formulas
and proofs only particular instances of interaction, and let us formulate new
concepts and properties to apply to the standard logical framework.

A design is an abstraction of a formal sequent calculus proof of multiplica-
tive additive linear logic (MALL) where the logical content of the proof, the
formulas in it, is forgotten. These proof-like objects are the syntactic sup-
port on which interaction can be performed: they are what is left once we
isolate and keep only the elements which are necessary to be able to use a
proof-like object in cut-elimination. In other words, only what tells us how
this object behaves is kept, its invariants when we vary the counter-proofs
with which cut elimination becomes possible. In this sense a designs is de-
�ned by its interactions, and, ideally, it is completely determined by the set
of its counter-designs. This property is called separation: two di�erent de-
signs can always be separated by a third design that is orthogonal (i.e. can
interact successfully) to only one of the two. If two designs have the very
same interactions, then they are the very same object. However, the separa-
tion theorem does not hold anymore if we extend ludics beyond its natural
linearity, as done in the works of C. Faggian and M. Basaldella [6], and K.
Terui [66]. The procedure of cut elimination travels from the conclusions up
to the axioms of a proof, it is indeed a proof-search procedure, and as we will
see the formulation of designs is closely related to the focusing discipline of

3In [38].
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proofs, used in the focalization theorem by Andréoli [5].
What we need to keep of a proof, to know how it interacts with its

counter proofs, is its locative structure, or tree-structure, and the relation
of subordination between its elements � the sub-formula relation � seen as
places in the proof. Formulas A,B, . . . becomes addresses ξ, ζ, . . ., which
are sequences of natural numbers; sub-formulas becomes sub-addresses, i.e.
su�xes of these sequences as ξ.1, ζ.3.2, . . .. For instance, if we have ξ at
the place of (A ` B) ⊕ A, then ξ1 (or, equivalently, with a separator ξ.1)
is A`B, ξ2 is A, while ξ12 is B and ξ11 is A again, though explicitly the
sub-formula of that particular occurrence of A ` B. It becomes clear how
ludics is intrinsically linear and locative: two instances of the same formula
become two di�erent addresses, since they stay in di�erent places, and so a
rule like contraction would not make any sense: ludics has a strict control on
resources by default4.

The formulation of designs as locative and interactive structures motivate
the introduction of the Daimon, noted 6, a tool whose function is to end
proof search, ful�lling the role of axioms, letting us have access to enough
counter-proofs for interaction to be complete � even incorrect ones. Indeed 6
can be interpreted as a symbol standing for an error, ending a design whose
equivalent in linear logic would be an incorrect proof ; however this is not an
issue in ludics. The reason that explains why we need enough counter-proofs
is very simple: if every design must have an orthogonal one, then obviously
one of the two must stand for an �incorrect proof�, since if the conclusion of a
proof is ⊢ A, obviously we can't prove ⊢ ¬A at the same time, otherwise the
system would be inconsistent. However when types are forgotten, and there
are no axioms anymore, proving a �false� statement becomes possible, but
irrelevant: what remains, and all that matters, is the geometrical structure
of a proof.

So, designs can be de�ned as abstractions of focused MALL proofs, that
means with a strict alternation of maximal cluster of rules of the same po-
larity. As we anticipated in the polarization of the connectives, every proof
have a focused form that brings ludics very close to game semantics, where a
play is a strict alternation of a player move and an opponent counter-move.
Designs can be formulated as Hyland-Ong innocent linear strategies on an
universal arena, as found in [6] and [27]. In a focused formulation of the se-
quent calculus on the right, we will have an alternation of positive (⊕ and ⊗)

4Curien, in [16], links the relation between formulas and addresses to the one between
typed and untyped λ-calculus, noting that ludics can provide what categories lacks, re-
garding the semantics of subtyping. He gives also an interpretation of the daimon as an
error elements, in the sense of a recoverable error, and stress the importance of errors in
denotational semantics.
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and negative (` and &) rules; but ludics goes a bit further, actually consid-
ering only positive formulas by means of De Morgan duality: positive rules
introduce addresses on the right of ⊢, and their sub-addresses, being nega-
tive, are put on the left, which by duality have their polarity inverted. Thus if
⊢ ξ, then ξ is introduced by a positive rule, therefore its sub addresses ξi will
be negative (since the rule is a maximal synthetic connective), and shifted
on the left ( ξi ⊢) � each in a di�erent premise � introduced by a negative
rule, which still corresponds, in linear logic, to the introduction of a positive
connective. While any number of addresses can be on the right, at most one
can be on the left, since the rule introducing it must be the next to be per-
formed, following the focusing discipline. Two considerations naturally arise
from this link with linear logic proofs, the �rst being that proof search stops
when reaching an axiom, which is of the form ⊢ A,A�. However, when proofs
are untyped by substituting formulas with addresses, recognizing an axiom
becomes impossible, since it would become just ⊢ ξ.i, ξ.j, a sequent made
of two di�erent addresses without any particular connection between them
except having the same pre�x. Moreover, a sequent of the form ξ ⊢ ξ is not
allowed, since in linear logic negation is not a rule, but only de�ned trough
De Morgan duality; moreover, having the same address name two di�erent
places in a proof would not make any sense. Indeed, axioms and atomic
formulas are completely arbitrary ; in a sequent of the form ⊢ A,A�, A can
be regarded as a variable, and could be substituted by any formula. However
addresses do not have an atomic format, and designs are built bottom-up,
where each rule extends the length of an address, by adding a su�x: there is
no sub-formulas property, and there is nothing telling us when we are done,
and when we can stop the proof-search. The Daimon (6) is thus needed to
play the role of axioms, telling us when to stop. It can be seen as the player
�giving up� a game, or the acknowledgment that we do not know how to
continue. Reading the proof top-down, instead the daimon resembles closely

a weakened axiom, of the form 6
⊢ ξ,Γ .

For the counter-proofs argument that we explained above, the Daimon
can be considered a sort of error : it always allow a counter-proof to exists
(in�nitely many, indeed), giving us an arbitrary means to stop proof-search.
We can therefore always build a counter-design by simply performing the
dual rule (or, with a game-semantical term, action), and then terminate
proof search with a 6. Having counter-proofs is essential to ludics where the
meaning of a design are its interactions against its orthogonals (the counter-
designs), and not the arbitrary address in its conclusion (or base); just as
in the contextual observational semantics of a program P , where a program
meaning is given by how it behaves and composes with any evaluation context
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C[ ] � i.e. a program with a placeholder that can be substituted by any other
program P � via the possible reduction sequences of the composition C[P ].
Therefore, interaction stops once it �nds a 6, which notes that it ended
successfully, while it will diverge if a 6 can't be reached: designs can indeed
be in�nite objects, and interaction never-ending.

2.2.1 Focalization

In this section we will brie�y explain the focusing discipline and focalization
theorem, to clarify and give a foundation to ludics' designs. Andréoli explored
further the division in positive and negative connectives, trying to optimize
proof-search in linear logic: the starting point of the focusing discipline is to
consider maximal cluster of connectives of the same polarity, called synthetic
connectives. A formula is thus decomposed up to its sub formulas of the
opposite polarity; for example ((A1 ⊗A2)&B)`C is a negative connective,
with as (positive) sub formulas A1 ⊗A2, B and C.

We consider sequents of only positive formulas, as noted before, and with
at most one formula on the left of ⊢ (the negative one). This follows from
the use of synthetic connectives: we will have a left rule and a set of right
rules for each connective; the right rules, being positive, are the irreversible
ones; dually, the left is reversible, and can always be performed without
consequences in proof search. Using synthetic connectives, the last rules of
a focused proof of the previous formula are:

⋮
⊢ A1,∆1

⋮
⊢ A2,∆2

⊢ A1 ⊗A2,∆ ⊢ B,C,∆
⊢ ((A1 ⊗A2) &B)`C,∆

Being focused, A1,A2 are negative formulas ; B,C are positive formulas, and
the negative connectives & and ` are introduced at the same time, forming
a cluster of two rules of the same polarity. Going further, and considering
only positive formulas, it becomes

⋮
A�

1 ⊢∆1

⋮
A�

2 ⊢∆2

⊢ A1 ⊗A2,∆ ⊢ B,C,∆
((A1 ⊗A2)� ⊕B�) ⊗C� ⊢∆

and in ludics, untyping the proof, we have
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⋮
ξ11 ⊢∆1

⋮
ξ12 ⊢∆2

⊢ ξ1,∆ ⊢ ξ2, ξ3,∆
ξ ⊢∆

(the two instances of ξ3 are allowed only in the case of a negative rule,
meaning that a & is taking place between some other addresses).

The focusing discipline is de�ned thus:

1. Once the proof-search starts the decomposition of a formula, it keeps
decomposing its sub-formulas of the same polarity, until the principal
connective is of the opposite polarity.

2. If there is a negative formula, it is decomposed �rst.

The result of the focusing discipline is that we have, at any time, at most one
negative formula, which then get decomposed up to its positive sub-formulas.
Then we need to chose which positive formula to decompose, and repeat the
cycle.

The consequence of the focusing discipline is that if the active formula is
positive, then all the formulas in the sequents are positive as well; after the
decomposition we will have a single negative formula in each premise, which
will be the active one, then generating again an only-positive premise, and so
on, obtaining an alternation of positive and negative rules, each decomposing
its conclusion up to the premises of the opposite polarity. By this way we
consider positive sequents with at most a negative formula, and proofs made
of synthetic connectives. As connectives are clusters of rules, we may con-
sider them as just partitions on the set of subformulas of opposite polarity
of the introduced formula. The positive rules will introduce formulas on the
right, while the negatives on the left. Furthermore positive rules can be ex-
pressed as a single subset of subformulas, one element constituting a di�erent
premise (the choice lies in how to partition the context), while the negative
ones as a subset of the power set (i.e. a set of subsets) of the subformulas,
with each subset as a di�erent premise (that can include more than a single
subformula). For example, consider the following rules:

⊢ A,B,∆ ⊢ C,B,∆
{{A,B},{C,B}}

(A� ⊕C�) ⊗B� ⊢∆

and
A ⊢ Γ B ⊢∆ {A,B}

⊢ (A� ⊕C�) ⊗B�,Γ,∆
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The �rst is a negative rule, the second one is positive, introducing dual
formulas. In ludics we assign sub addresses to each sub-formula, with as result

⊢ ξ1, ξ3,∆ ⊢ ξ2, ξ3,∆
(−, ξ,{{1,3},{2,3}})

ξ ⊢∆
for the negative rule, and

ξ1 ⊢ Γ ξ3 ⊢∆
(+, ξ,{1,3})

⊢ ξ,Γ,∆
for the positive one. We have that ξ1 = A; ξ2 = C and ξ2 = B, and +/−

makes explicit the polarity of the rule.
Note that any isomorphic connective has the same rule, once synthesized.

This leads to the formulation of a single general rule for each polarity. Via
distributivity and associativity we can consider a single positive rule and a
single negative rule, from which we can derive all the particular instances.
We have:

positive rule:
Ai1 ⊢∆1 . . . Aini

⊢∆ni

⊢ (A�
11 ⊗⋯⊗A�

1n1
) ⊕⋯⊕ (A�

p1 ⊗⋯⊗A�
pnp

),∆
with (∆1 ∪ . . . ∪ ∆ni

) ⊆ ∆ and ∆k ∩ ∆l = ∅ for k, l ∈ {1, . . . , ni}, i.e. the
contexts of the premises are pairwise disjoint.

negative rule:
⊢ A11, . . . ,A1n1 ,∆ . . . ⊢ Ap1, . . . ,Apnp ,∆

(A�
11 ⊗⋯⊗A�

1n1
) ⊕⋯⊕ (A�

p1 ⊗⋯⊗A�
pnp

) ⊢∆

The hypersequentialized presentation of proofs let us keep only the part of
the proof relevant for proof search, and thus for cut elimination. For example,
the isomorphic formulas A⊗ (B ⊕C) and (A⊗B) ⊕ (A⊗C) have the same
presentation as synthetic rules. In both cases, regarding proof-search, we
need to �nd a proof of A and a proof of B, or a proof for A and a proof of
C; while for cut elimination we can proceed either with a cut on A and B
or with a cut on A and C; there is no relevant distinction, except that the
search-space for proofs is signi�cantly smaller.

It is possible to introduce a focusing sequent calculus5, by which we can
build only proofs respecting the focusing discipline, using two operators for
the change of polarity, ↓ and ↑, called shift operators. Atoms can be consid-
ered either positive (as is usually done) or negative without any loss, since
for each atom we have its dual, of opposite polarity. The question about
the polarity of atoms is not completely irrelevant, though. Indeed atoms are
such for an arbitrary choice, as is the Daimon: we decide that we do not
want, or need, further decomposition of a formula; otherwise atoms should

5A formal presentation can be found in [5] and [15].
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be a special kind of formulas, with neutral polarity (or better, introduced by
a neutral rule), since they have no connectives, subformulas or premises in
the axiom rule.

Skipping the rules of the calculus, the theorem lies in proving that in this
smaller search-space nothing is lost with respect to provability (we refer to
[5] for the proof, or [15] for a short sketch). At last we have the focalization
theorem:

Theorem 2.2.1 (Focalization). Focused proofs are complete with respect to
provability. If ⊢ A is provable in the LL sequent calculus, then it is provable
by a cut-free focused proof in the focused sequent calculus.

2.2.2 Designs

Designs are an abstraction of focused proofs, built from synthetic connec-
tives, from which the logical content � the formulas � has been substituted
by addresses indicating their place in the proof, in order to keep only the
essential structure needed for interaction. The structure of a design is the
way it interacts (with its counter-designs), and thus its semantics.

Designs are based on hypersequentialized sequences of rules of alternate
polarity, where these rules are called actions, of the form (+/−, ξ, I/N),
where I ⊂ N and N ⊂ Pfin(N). Such alternated sequences of actions are
called chronicles or branches. A design is thus a set of chronicles verifying
some constrains and properties, that can be represented as a set of sequences
of actions, or in sequent calculus style as a proof-tree structure.

Designs as dessin or desseins

The basic notion de�ning designs are those of action and justi�cation, which
are de�ned on addresses as focus of an action.

De�nition 2.2.2 (Abstract sequent). Addresses are sequences of natural
numbers, noted ξ, ζ, . . .. An abstract sequent, or base is of the form ξ ⊢∆ if
negative, or ⊢∆ if positive, with ∆ a set of addresses; moreover we assume
that all addresses in a base are pairwise disjoint. With ξ ∗J we note any sub
address of ξ.

Remark 2.2.3. Note that the disjunction requirement is not essential to
make designs work. It is the practical expression of the locative principle, that
an address should denote a particular place or position inside a proof, and
thus must be unique. However, once the syntactic rules are given, we could
drop this linearity constrain without occurring in particular inconsistencies:
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we would be just disregarding the meta-theory behind ludics. Still, allowing
multiple copies of an address in a base does have some consequences on the
properties of designs, as explained in [6].

At �rst, we can de�ne designs as dessein (the original term of [38]), i.e. a
set of sequences of actions of alternate polarity (in short alternate sequences).
We need the following de�nitions6:

De�nition 2.2.4 (Action). A proper action is a triple (ε, ξ, I/N = {I1, . . . , In}),
noted κ such that:

� ε ∈ {+,−} is the polarity of κ;

� ξ is the focus of κ;

� I or N = I1, . . . , In is the rami�cation of κ; sometimes we improperly
say rami�cations, and call each element of I or N a single rami�cation.
If ε = + then I ⊂ N, i.e. a �nite set of natural numbers; otherwise
N ⊂ Pfin(N), i.e. a �nite element of the power set of natural numbers.
We improperly denote both cases with I, J, . . ., for any polarity of the
action.

The improper action is the daimon, a positive action noted with 6. The
dual of ε is noted ε.

Next, we must de�ne alternated sequences of actions as chronicles, based
on the notion of justi�cation:

De�nition 2.2.5. An action κ = (ε, ξi, J) is justi�ed by the action τ =
(ε, ξ, I) if its focus ξi is produced by the rami�cation I of τ , i.e. is a sub
address ξi of the focus ξ of τ such that i ∈ I.

De�nition 2.2.6 (Chronicle). A chronicle, noted c, is a non empty alter-
nated sequence of actions such that:

Justi�cation: A proper positive action is either justi�ed by a previous
action, or initial if belongs to a base.

A negative action is initial, if is the only negative action in a base, or
justi�ed by the previous positive action.

Linearity: Actions of the sequence have not the same focus.

Daimon: The daimon can be only the last action of the sequence.

6For this part, we follow [60]
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We say that a chronicle c is of base base Γ ⊢∆, with Γ a single address
or ∅, if all the foci of the initial positive actions of c are in ∆, and the focus
of a possible initial negative action is Γ.

We also need the following relation on chronicles

De�nition 2.2.7. Two chronicles c1 and c2 are coherent, in symbols c1 ∼
c2, if:

� Either one extends the other or they di�er on a negative action.

� If two chronicles have a di�erent negative action, then there are no two
actions in the chronicles with the same focus.

Remark 2.2.8. The second condition gives an implicit restriction on the
division of the context on negative rules: the context must not be necessarily
disjoint in the premises of a negative rule, but if the same address is kept
twice, only one chronicle may have a rule with it as focus, to be coherent
with the others.

Now we have all the elements for the de�nition of design as dessein.

De�nition 2.2.9 (Dessein). A dessein, noted D, of base Γ ⊢ ∆ is a set of
chronicles of the same base such that:

(i) D is closed by pre�x, i.e. if ξi ∈ D then ξ ∈ D.

(ii) ∀c1,c2 ∈ D,c1 ∼ c2, therefore D is a clique of chronicles, i.e. they are
pairwise coherent.

(iii) A chronicle of D without extension ends with a positive action.

(iv) If the base of D is positive then D ≠ ∅.

We will occasionally use the dessein presentation. However, for the more
familiar syntax and intuitive structure of sequent calculus proofs, we will rely
mostly on the dessin de�nition of designs, and say design in general, letting
the context specify the presentation used.

De�nition 2.2.10 (Dessin). A dessin D is a tree of abstract sequents built
and labeled by actions κ, such that the leaves of the tree are negative sequents,
or positive sequents introduced by a daimon action 6 (thus, each branch
must end with a positive action). Actions are noted in the following way:

� Daimon (Dai+∆ ∶) ⊢∆
6

where ∆ is a �nite set of addresses. The Daimon is a positive action.
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� Positive action:

. . . ξ.i ⊢∆i . . .

⊢∆, ξ
(+, ξ, I)

where i ∈ I, with I ⊂ N. I is the rami�cation of the rule, ξ is the focus,
∆is are disjoint and included in ∆.

� Negative action:

. . . ⊢ ξ.I,∆I . . .

ξ ⊢∆
(−, ξ,N)

where N is the rami�cation of the rule, and ξ its focus. N ⊂ Pfin(N),
ξ.I = ξ.1, . . . , ξ.n, with 1, . . . , n ∈ I ∈ N , and the ∆I are included in ∆.

Positive and negative actions are alternated and Dai+ can only be the last
action of a dessin. As we said we sometimes improperly call rami�cations of
a rule the whole chronicles (or branches) generated by that rule.

Remark 2.2.11. We must note that, despite being an abstraction of linear
logic proofs, the actions hide an implicit weakening, as noted in [15]. While
the daimon may be seen as a weakened axiom rule, the requisite on the
context ∆ is such that the contexts ∆i of the premises must only be included,
thus there might be some unique addresses in ∆, which then disappear from
the bases of the rami�cations. Indeed, if no action is performed on these
unique addresses, they would not appear at all in the dessein representation,
as set of chronicles.

Moreover, the case of the empty rami�cation (+, ξ,∅) is admissible by

de�nition. The linear logic correspondent of this action can be either ⊢ ⊺,Γ ,

or ⊢ 1 , depending on the presence or not of the context (on which, however,
no rule is performed). Still, this is not an actual weakening, since addresses
disappearing from the context are irrelevant with respect to the correctness
of the sequence of actions, i.e. they are still chronicles, and the dessein
representation, as any game semantical one, is thus una�ected.

The examples previously given show how dessins comes directly from the
abstraction of sequent calculus proofs. Therefore we can interpret dessins as
cut free focused proofs, built from the unique negative and positive rules
de�ned above. As a proof have many sub proofs, we can de�ne the notion of
sub design, which is a sub tree whose root is the base of one of the sub chron-
icle of the designs, i.e. is one of the premises generated by the rami�cation
of an action.
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Example 2.2.12. Let D be

ξ011 ⊢
⊢ ξ01

ξ0 ⊢

ξ100 ⊢
⊢ ξ10

ξ1 ⊢

6
⊢ ξ30

ξ3 ⊢
⊢ ξ

Then

ξ011 ⊢
⊢ ξ01

ξ0 ⊢
and

ξ100 ⊢
⊢ ξ10

ξ1 ⊢
are sub designs of D, while

ξ100 ⊢
⊢ ξ10

ξ1 ⊢

6
⊢ ξ30

ξ3 ⊢
⊢ ξ

is not.

The two presentations of dessin and dessein are equivalent, and we can
always shift from one to the other. Going from dessin to dessein is extremely
simple: the correspondent dessein of a dessin is the set of chronicles obtained
by following, bottom-up, the sequence of actions of each branch of the tree,
where the base of the dessein is the same one of the starting dessin.

Therefore at each dessin we can associate an unique dessein. The con-
verse, however, is not immediately possible, because of the choices we have
on the context. The context can be partitioned in many ways, but any ad-
dresses not focus of an action is not represented in the dessein counterpart
of a dessin, therefore we need a stronger notion of dessin in order to have a
one-to-one correspondence.

Informally7, we are going to naively delete from the (bases of the) ram-
i�cations all addresses in the base ⊢ Γ,∆ of a dessein which are not focus
of an action, and build a dessin from this sequence of actions, which in this
way is going to be unique. The resulting dessin is called the associated sober
dessin.

Example 2.2.13. Let D be the dessein

{κ1 = (+, ξ,{1,2,3}),
κ2 = (−, ξ1,{{0}}) κ3 = (+, ξ10,{0});
κ4 = (−, ξ2,{{0}}) κ5 = (+, ξ20,∅);

7The formal de�nitions can be found in [60].



48

κ6 = (−, ξ3,{{0}})(+, ξ30,6)}

of base ⊢ ξ, σ, τ . Then its associated sober dessin is

ξ100 ⊢
κ3⊢ ξ10
κ2

ξ1 ⊢

κ5⊢ ξ20
κ4

ξ2 ⊢

6
⊢ ξ30

κ6
ξ3 ⊢

κ1⊢ ξ, σ, τ
where σ and τ are erased from the rami�cations of the base.

2.2.3 Interaction

We presented interaction as the core notion of ludics, which gives meaning
to its objects, that at the same time serve as its necessary supporting struc-
ture. The most familiar way to describe interaction is via a cut-elimination
like algorithm, de�ned on dessins and easily transferred to desseins, via the
associated sober dessin.

We must note, however, that interaction, as well as designs, can be de�ned
in game semantics terms: designs as Hyland-Ong games, and interaction as
an abstract machine (as done in [6], [66], both modi�cation of the abstract
machine of [20]). We give a de�nition close to the original one given in [38],
and presented using the notion of interaction paths.

Interaction is performed in cut-nets, set of designs which enjoy certain
properties.

De�nition 2.2.14. A cut-net, denoted R, is a set of designs such that:

� Each address appears at most in the base of two di�erent designs, in
dual position. Each such pair is called a cut, as for instance (ξ ⊢, ⊢ ξ).

� The graph with as nodes the bases of the designs, and as edges the cuts
must be acyclic and connected.

The base of a cut-net is the sequent Γ ⊢ ∆, where Γ is either empty or
the only un-cut negative address of a base (the connectedness and acyclicity
of the graph force it to be at most one), and ∆ are all the positive un-cut
addresses (of the bases of the designs).

The principal design of the cut-net is the design whose base has the same
negative part of the base of the cut-net.

A cut-net is said closed if its base is empty, otherwise is open.
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The closed case interaction is the most interesting to us, since it let us
de�ne the notion of orthogonal design, which is the correspective of logical
negation and duality. An interaction between two designs ends successfully
if the result is 6, and is de�ned thus:

De�nition 2.2.15 (Closed interaction). Let R be a closed cut-net. Let D be
the principal design of the net. Its base must be positive, since all negative
bases are part of a cut. The result of interaction, noted JRK, is de�ned by
the following algorithm. Let k be the �rst rule of D, then

1. If k is 6 then JRK = 6.

2. Otherwise k = (+, ξ, I), and ξ is part of a cut with a rule (−, ξ,N) of a
distinct design C, with N = {J1, . . . , Jn}. Then:

� If I ∉ N then interaction diverges, and JRK = ⊢ , an empty set of
chronicles, which is not a design.

� If I ∈ N , then interaction continues on the sub designs of D gen-
erated by the rami�cation I, and the sub-design of C generated
by the sub-rami�cation I ∈ N (and the other designs of R). So,
interaction continues on

JRK ∶= JR[Dj(j∈I)/D][CI/C]K

the same cuts net where D and C are substituted by, respectively,
all its sub-designs for the �rst, and the sub-design with the match-
ing rami�cation for the second. Note that here a change in focus
can occur, as the new principal design will be CI , and its �rst (pos-
itive) rule might be on what was context in the step before (not one
of the ξ ∗ I). The new principal design is, then, CI .

The open case is very similar to the closed one, except for a few points:

� The principal design D might be negative: in this case, the cut-net R
is split in one cut-net for each premise of D; each one will substitute
the principal design in its respective cut-net.

� The focus of the action k of the positive principal design might not be
cut: in this case, we consider for each sub-designs Di of D a cut-net
Ri, containing Di and the designs of R whose base has a cut with any
address of the context of Di.

Each action k (each �rst rule of the current D), and its dual k�, are said
visited during interaction.
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Example 2.2.16.

D =

⋮
ξ.1 ⊢

⋮
ξ.2 ⊢

⊢ ξ (+, ξ,{1,2})

C =
. . .

⋮
⊢ ξ.1, ξ.2,ΓI . . .

ξ ⊢ Γ
(−, ξ,{. . . ,{1,2}, . . .})

The two ξ form a cut. Interaction checks the premises of the positive
action, and continues if its sub-addresses (the rami�cation) match with one
set of the negative counterpart, otherwise diverges. It stops if it reaches a 6.

We can now give the de�nition of orthogonal, and duality in general.

De�nition 2.2.17 (Orthogonal). � Two designs D,C of respective base
⊢ ξ and ξ ⊢ are orthogonals, or duals, if JD,CK = 6. In symbols we
write D�C.

� A set of designs R = {C0, . . . ,Cn} of respective bases ⊢ ξ, σ1 ⊢, . . . , σn ⊢,
is orthogonal to a design D of base ξ ⊢ σ1, . . . , σn} if JD,RK = 6; in
symbols we write D�R.

� The set of all orthogonals of D is noted D�; the orthogonal of a set of
designs R is

R� = ⋂
D∈R
D�.

Interaction can be de�ned through a very intuitive token-machine between
two designs forming a cut on their bases. We de�ne the algorithm for the
closed case, thus starting with a positive design.

De�nition 2.2.18 (Token-machine interaction). Let t be a token and tn the
token position at the n-th step. Let D be a design of positive base ⊢ ξ,∆,
introduced by (+, ξ, I), and C a design of negative base ξ ⊢ ∆′, introduced by
(−, ξ,N).

t0 = (+, ξ, I).

Let tn be a positive rule:

1. If tn = (+,∆,6), then interaction stops (successfully). The result of
interaction is 6∆.
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2. If tn = (+, ζ, I) in D (without loss of generality), then we have two
cases:

� If ∃(−, ζ,N) ∈ C, and I ∈ N , then tn+1 = (−, ζ,N).

� Otherwise tn+1 = � (is unde�ned), and interaction diverges.

3. If tn is a negative rule of the form (−, ζ,N), and tn−1 = (+, ζ, I), with
I ∈ N , then tn+1 = (+, ζ.i, I ′), the rule introducing the I-th premise of
(−, ζ,N), where i ∈ I.

An example of interaction

Example 2.2.19.

Let D =

ξ.1.1.1 ⊢
(+, ξ.1.1,{1})4

⊢ ξ.1.1
(−, ξ.1,{{1}})3

ξ.1 ⊢

ξ.2.1.1 ⊢
(+, ξ.2.1,{1})8

⊢ ξ.2.1
(−, ξ.2,{{1}})7

ξ.2 ⊢
(+, ξ,{1,2})0

⊢ ξ

and C =

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1,{{1}})9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2,{1})6

⊢ ξ.1.1.1, ξ.2
(−, ξ.1.1,{{1}})5

ξ.1.1 ⊢ ξ.2
(+, ξ.1,{1})2

⊢ ξ.1, ξ.2
(−, ξ,{{1,2}})1

ξ ⊢
The numbers denote the n-th interaction step. Interaction starts from the

cut on the bases (⊢ ξ, ξ ⊢), and checks the premises of the + rule: if {1,2}
�nds a match in the corresponding negative rule, interaction continues, and
ends successfully if it reaches a 6. In the following we omit to note the
rami�cations for brevity; the interaction steps are:

(1) ∶
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ξ.1.1.1 ⊢
(+, ξ.1.1)4

⊢ ξ.1.1
(−, ξ.1)3

ξ.1 ⊢

ξ.2.1.1 ⊢
(+, ξ.2.1)8

⊢ ξ.2.1
(−, ξ.2)7

ξ.2 ⊢
(+, ξ)0

⊢ ξ

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1)9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2)6

⊢ ξ.1.1.1, ξ.2
(−, ξ.1.1)5

ξ.1.1 ⊢ ξ.2
(+, ξ.1)2

⊢ ξ.1, ξ.2
(−, ξ)1

ξ ⊢
Visited actions: (+, ξ)0(−, ξ)1

(2) ∶

ξ.1.1.1 ⊢
(+, ξ.1.1)4

⊢ ξ.1.1
(−, ξ.1)3

ξ.1 ⊢

ξ.2.1.1 ⊢
(+, ξ.2.1)8

⊢ ξ.2.1
(−, ξ.2)7

ξ.2 ⊢

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1)9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2)6

⊢ ξ.1.1.1, ξ.2
(−, ξ.1.1)5

ξ.1.1 ⊢ ξ.2
(+, ξ.1)2

⊢ ξ.1, ξ.2

Visited actions: (+, ξ)0(−, ξ)1 → (+, ξ.1)2(−, ξ.1)3

(3) ∶

ξ.1.1.1 ⊢
(+, ξ.1.1)4

⊢ ξ.1.1

ξ.2.1.1 ⊢
(+, ξ.2.1)8

⊢ ξ.2.1
(−, ξ.2)7

ξ.2 ⊢

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1)9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2)6

⊢ ξ.1.1.1, ξ.2
(−, ξ.1.1)5

ξ.1.1 ⊢ ξ.2

Visited actions: (+, ξ)0(−, ξ)1 → (+, ξ.1)2(−, ξ.1)3 → (+, ξ.1.1)4(−, ξ.1.1)5

(4) ∶

ξ.2.1.1 ⊢
(+, ξ.2.1)8

⊢ ξ.2.1
(−, ξ.2)7

ξ.2 ⊢

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1)9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2)6

⊢ ξ.1.1.1, ξ.2

Visited actions: (+, ξ)0(−, ξ)1 → (+, ξ.1)2(−, ξ.1)3 → (+, ξ.1.1)4(−, ξ.1.1)5

→ (+, ξ.2)6(−, ξ.2)7
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(5) ∶

ξ.2.1.1 ⊢
(+, ξ.2.1)8

⊢ ξ.2.1

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1)9

ξ.2.1 ⊢ ξ.1.1.1

Visited actions: (+, ξ)0(−, ξ)1 → (+, ξ.1)2(−, ξ.1)3 → (+, ξ.1.1)4(−, ξ.1.1)5

→ (+, ξ.2)6(−, ξ.2)7 → (+, ξ.2.1)8(−, ξ.2.1)9

(6) ∶
610

⊢ ξ.2.1.1, ξ.1.1.1

Visited actions: (+, ξ)0(−, ξ)1 → (+, ξ.1)2(−, ξ.1)3 → (+, ξ.1.1)4(−, ξ.1.1)5

→ (+, ξ.2)6(−, ξ.2)7 → (+, ξ.2.1)8(−, ξ.2.1)9 → 610.

Note that the least number at each step denotes the �rst action k of the
current principal design. We can see how the cut-net R = JD,CK after each
step is restricted to sub-designs of D and C. For instance, R3, noting the
cut-net at the third step, is composed by:

D1:
ξ.1.1.1 ⊢

(+, ξ.1.1,{1})4

⊢ ξ.1.1
; D2:

ξ.2.1.1 ⊢
(+, ξ.2.1,{1})8

⊢ ξ.2.1
(−, ξ.2,{{1}})7

ξ.2 ⊢

;

and C1:

610

⊢ ξ.2.1.1, ξ.1.1.1
(−, ξ.2.1,{{1}})9

ξ.2.1 ⊢ ξ.1.1.1
(+, ξ.2,{1})6

⊢ ξ.1.1.1, ξ.2
(−, ξ.1.1,{{1}})5

ξ.1.1 ⊢ ξ.2

The core theorems

Interaction and designs yield the following results, called analytical theorems,
at the core of the theory8.

1. The associativity theorem, a diamond (con�uence) property for inter-
action.

2. The monotonicity theorem, and

3. the stability theorem.

8All the theorems have a correspondent in the λ-calculus, as noted in [16].
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The separation theorem is what keeps them together, stating that a
design is completely identi�ed by its interactions: two designs are the same
if and only if they have the same interactions (the set of their orthogonals is
the same), i.e. there is no third design orthogonal to only one of the two.

The theorem is tied to the intrinsic linearity of ludics. For instance in the
already cited ludics with repetitions we �nd a formulation in game-semantics
terms where repeated actions with the same focus are admitted; however,
once the linearity constrain is dropped � allowing repetition of addresses �
the separation theorem does not hold anymore9.

As a consequence of interaction and the separation theorem, we can de�ne
a notion of inclusion between designs, using the orthogonals as method of
comparison. Note that this is not the sub design relation, which is not an
inclusion with respect to interaction, since a sub-design has as base a sub-
address of the main one. In the same way, shortening branches of a design D
using 6 (an idea to which we will resort later), while apparently could be seen
as an inclusion, has the opposite e�ect on the orthogonal, since D� ⊆ (D6)�.

The relation that we need is an inclusion of the following kind:

De�nition 2.2.20. Let D and C be designs with the same base. We say that
D is more de�ned than C, in symbols D ⪯ C, if D� ⊆ C�.

⪯ is transitive, re�exive and antisymmetric by the separation theorem.
Indeed it can never be D� = C� if C ≠ D.

The fact that designs are fully described by their interactions is a notable
result, which goes in accord with ludics' aim of closing the gap between
syntax and semantic. The stability and monotonicity theorems are usually
semantics property; while con�uence (the diamond property) is syntactic,
depending of how the calculus is performed. In ludics designs are de�ned by
their dynamics, and thus only interaction remain as a meter of evaluation;
therefore we can express all these properties via interaction.

Using the ⪯ as ordering between designs, we can express the previous
properties in the following way:

1. Associativity: let {R0, . . . ,Rn} be a set of cut-nets, then JR0, . . . ,RnK =
JJR0K, . . . , JRnK, K

2. Stability: let R be a cut-net, and Ri ⊂ R, for all i ∈ I ≠ ∅. Then
J⋂i∈I RiK = ⋂i∈IJRiK.

3. Monotonicity: if D0 ⪯ C0, . . . ,Dn ⪯ Cn then JD0, . . . ,DnK ⪯ JC0, . . . ,CnK.
9While still allowing internal and full completeness, [6], section 9 and 10.
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Using the notion of orthogonality we can now de�ne behaviours, sets
of designs of same base closed by bi-orthogonality (i.e. of designs which
behave the same with respect to interaction), which are a fundamental tool
of ludics. They are ludics equivalent of types, in which we can interpret
linear logic formulas, via a BHK-like semantics: a formula A is the set of its
proofs, thus a behaviour A interpreting A contains the designs corresponding
to the proofs of A. Operations on behaviours corresponding to linear logic
connectives are de�nable, noted⊗,

˙
,
˘
,⊕, which let us compose the types,

along with properties of full and internal completeness with respect to linear
logic proofs (we state the theorems below).

2.2.4 Behaviours

A behaviour is a set of designs closed by bi orthogonality: a set B of designs
with the same base such that B = B��. A behaviour is positive if of base
⊢ Γ, negative if of base ξ ⊢ Γ.

De�nition 2.2.21. A set of designs of same base B is a behaviour if
B = B�,�. A behaviour has the same polarity of its base.

If B = {D0, . . . ,Dn} (with each Di of same base), then we say that B is
the set of generators of B�� = B.

A behaviour B is connected if all D ∈ B have the same �rst action.

Be aware that any set orthogonal of a net of designs, i.e. a set R of
designs with the same base, for example de�ned as R�, is a behaviour, since
R��� = R�.

Another notable fact is that, if we take a single design {D}, then the
smallest behaviour containing it is

{D}�� = {D′ ∣ D ⪯ D′}.

This follows directly by the de�nition of ⪯. Some immediate properties are:

� Let B be a behaviour, then if D ∈ B and D ⪯ C, then C ∈ B.

� If, ∀Dk ∈ B, with k ∈K ≠ ∅, ∃D such that ∀Dk,Dk ⪯ D, then ⋂k∈K Dk ∈
B, by the stability theorem.

� Let B and G be behaviours. Then B∩G is a behaviour. Assuming that
B = B� and G = G�, then we have B� ∩G� = (B ∪G)�, by De-Morgan
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duality, which is a behaviour, since it is de�ned as the orthogonal of a
given set. In short, every intersection of behaviours is a behaviour.

� If G ⊂ B then B� ⊂ G �.

Example 2.2.22. Here are a few examples of notable behaviours.

� If B = {Skξ} the empty design of negative base ξ ⊢, then B� = {6ξ}, the
design (+, ξ,6) of base ⊢ ξ. Then, B�� contains all designs of base ⊢ ξ.
We note B�� with ⊺, while {6} with 0.

� Let B = {(+, ξ,∅)}, where (+, ξ,∅)
⊢ ξ is the positive design of empty

rami�cation, denoted with Oneξ. Then B� contains all designs which
include the chronicle {(−, ξ,∅)6}, where 6 introduces ⊢. We note
{One}�� with 1 (indeed ⊢ 1 is the only linear logic respective of an
empty rami�cation, since there is no weakening without the exponen-
tials).

Behaviours let us interpret linear logic into ludics, giving us a tool to �nd
the usual notions and operations of logic in this di�erent setting. However,
designs do not always correspond to correct linear logic proofs in sequent
calculus, since 6 can be interpreted as a symbol for error, and a tool to
include incorrect proofs: we are arbitrarily stopping a proof-search, in order
to always be able to build a counter-proof for any given design. Therefore, we
need a way to discriminate between designs representing correct linear logic
proofs, and the incorrect ones: a behaviour interpreting a formula can thus
be seen as a set of correct designs, which stand for the proofs of this formula.
The next step is to de�ne operations of behaviours corresponding to linear
logic connectives, that can be used as a semantic for linear logic (in fact for
MALL2, the propositional second order linear logic, with no exponentials10).

Behaviours satisfy two remarkable completeness properties:

� Full completeness, which says that if D ∈ A , and the behaviour A
is the interpretation of a formula A, then D is the interpretation of a
proof of A; and

� Internal completeness, which says that we can decompose a be-
haviour which is the interpretation of a decomposable formula, into sub
behaviours interpreting its sub formulas. For example if A ⊗B is a
behaviour interpreting A ⊗ B (for an operation ⊗ to be de�ned on
behaviours), then A is the interpretation of A, and B is the interpre-
tation of B.

10As seen in [60].
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We saw that a behaviour B is closed under ⪯; hence if a design D is in a
behaviour, all less de�nite designs are also in the behaviour. The dual notion
is the one of incarnation, i.e. the smallest design included in D (with respect
to the set of chronicles), such that it still belongs to B. The de�nition is the
following:

De�nition 2.2.23 (incarnation). Let B be a behaviour, and let D ∈ B. The
incarnation of D in B, denoted ∣D∣B, is the smallest design D′ included in
D that still belongs to B (it exists by the closure property already remarked).
Moreover:

1. A design D is material in B if D = ∣D∣B.

2. The incarnation of B, denoted ∣B∣ is the set of the material designs of
B.

Intuitively the notion of incarnation is strongly tied to the one of visitable
path11 in interaction. The incarnation of a behaviour are all the (sets of)
chronicles of its designs which are actually visited by some interaction with
the orthogonal. For example:

� ∣⊺∣ = Skξ, while ∣0∣ = {6} and ∣1∣ = 1.

� ∣{D}��∣ = D6, where D6 is the set of designs obtained by replacing, in
some chronicles of D, the last positive rule with a 6.

Another notion we require is that of directory of a behaviour B, denoted
DirB or RepB (from répertoire).

De�nition 2.2.24 (Directory). Let B be a behaviour. The directory of B,
denoted DirB is the set of rami�cations of the �rst actions of the material
designs of B.

This notion will be important when de�ning operations on disjoint be-
haviours, in the sense of their rami�cations (but still of same base). Here are
a few examples:

� Dir⊺ =Dir0 = ∅.

� Dir1 = {∅}.

� If the �rst action of D is (+, ξ, I), then Dir{D}�� = I, if D is negative of
�rst action (−, ξ,N), then is {I1, . . . , In} for I1, . . . , In ∈ N .

Note that the directory of a connected behaviour is a singleton containing
the sole �rst action of all its designs.

11By which incarnation can be de�ned, as in [28].
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Operations on behaviours

We now present the basic operations on sets of designs which, used in com-
bination with orthogonality, have a precise logical meaning and are able to
represent the connectives of linear logic.

At �rst we can note the following facts about the intersection ∩12:

� Let B be a (negative) behaviour of base ξ ⊢, then B ∩ ⊺ξ⊢ = B.

� If D ⪯ E , then {D}�� ∩ {E}�� = {E}��, since {E}�� ⊂ {D}��.

� If B and C are positive behaviours, and DirB∩DirC = ∅, then B∩C =
0.

� If B and C are negative behaviours, andDirB∩DirC = ∅, then ∣B∩C ∣ =
∣B∣ ∪ ∣C ∣.

De�nition 2.2.25. Let B and C be two behaviours of the same base. Then
B and C are disjoint if DirB ∩DirC = ∅.

Therefore, we have that ∩ on behaviours is commutative, associative and
have a neutral element, that is the design ⊺ (for negative behaviours). We
can then consider the dual operation, ∪, which however must be obviously
closed by bi-orthogonality, if we want a behaviour as result. In this case
it has the same properties, with the design 0 as neutral element � that is
⊺� = ({Skξ}��)� restricted to {6}. We need a few further notions in order to
build some well-de�ned operations that correspond to linear logic connectives
� operations and notions that will return later in our interpretation, with
slight modi�cations.

De�nition 2.2.26 (Alienation). Let B and C be two behaviours of the same
base. They are alienated if the reunions of their respective directories are
disjoint, i.e. if ⋃DirB ∩⋃DirC = ∅.

The de�nition of alienated behaviours makes sense when the directories
are not a singleton, but have multiple elements. In this case we would have
sets of sets, since the rami�cations are �nite subsets of natural numbers (in
the negative case �nite subsets of P(N)); then it makes sense to take their
reunion ⋃, to check the single numbers inside them, and see if there is an
intersection there, i.e. one or more common numbers, instead of a whole set.

12Found in [16], where properties are formulated di�erently, and are more focused on in-
teraction. In particular the last fact of the list is proved as a Lemma on disjoint behaviours,
a property that Girard calls the �mystery of incarnation�, [16], p.43.
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Other than the notion of alienated behaviours, we need a tool which let
us de-synchronize a behaviour, in other words change its polarity, in such a
way that it will be recognizable (i.e. we can recover its previous form).

De�nition 2.2.27. Let c be a chronicle of base ⊢ ξi (respectively ξi ⊢).
With ↓ c we denote the chronicle (−, ξ,{{i}}).c of base ξ ⊢ (respectively
(+, ξ,{i}).c of base ⊢ ξ).

Let D be a design of base ⊢ ξi (respectively (ξi ⊢) if negative), then ↓ D =

{↓ c ∣ c ∈ D}

Then, let B be a behaviour of base ⊢ ξi (ξi ⊢ if negative), then ↓B =

{↓ D ∣ D ∈ B}��.

The operations on behaviours corresponding to linear logic connectives
are the following:

De�nition 2.2.28. Let Bk be a family of disjoint positive behaviours of
same base, then

⊕Bk = (⋃Bk)��

Let Bk be a family of disjoint negative behaviours of same base, then
¯

Bk = ⋂Gk

Note that the following facts hold:

1. (
˘

Bk)� = ⊕B�
k , since

⋂Bk = ⋂B��
k = (⋃B�

k)�

2. The property called the mystery of incarnation consists in the following
fact:

∣B & C ∣ = ∣B∣ × ∣C ∣
i.e two disjoint negative behaviours do not have common material de-
signs, therefore the & is equivalent to a Cartesian product on the in-
carnation.

About these operations, we can note right away that they are natural only
up to a certain degree. Firstly, they are polarized, i.e. they depend on the
polarity of the behaviours, and the operation ↓might be needed to extend the
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designs with an action of the wanted polarity; secondly, they require disjoint
behaviours.

Regarding the mistery of incarnation, J.-Y. Girard talks about a spiritual
dilemma13: in order to carry out these operations, we may need to adapt the
directories of the behaviours accordingly, which is indeed a rewriting, also
called de-localization14, on the �rst rules of the designs of the behaviour, in
order to have disjoint directories, and so no superposition of addresses (which
can be seen as the sub formulas of the conclusion). Note that this operation
would not change the structure of the design, intended as the cardinality of
the rami�cation, and the polarity and number of rules of each chronicle; it is
only a substitution of numbers in the pre�xes of premises of the �rst rule(s).
This de-localization is indeed a dilemma, since it is a step back from the
abstraction of proofs that designs are: we need to adapt to their intended
logical meaning.

The last operations we need to de�ne are those for the multiplicative
connectives. Both are based on an operation noted ⊙, which we call merging
for future purposes.

De�nition 2.2.29. Let D and C be designs of the same base ⊢ ξ. We de�ne
D ⊙ C by cases:

� if D or C is 6, then D ⊙ C = 6.

� Otherwise, let (+, ξ, I) and (+, ξ, J) be the �rst action of, respectively,
D and C. Then

� if I ∩ J = ∅, we have that:

D ⊙ C = {(+, ξ, I ∪ J).c ∣ (+, ξ, I)c ∈ D or (+, ξ, J)c ∈ C}

� otherwise D ⊙ C = 6.

⊙ is commutative, associative and its neutral element is the design One =
(+, ξ,∅). We will use this operation along with a de-localization de�ned
as a renaming on designs, which can be applied to any of the two designs,
members of ⊙, to make them alienated. For the multiplicative connectives,
we de�ne the operations on alienated designs, instead of simply disjoint.

De�nition 2.2.30. Let B and E be positive alienated behaviours (thus of
the same base). Then

B⊗E = {D ⊙ C ∣ D ∈ B,C ∈ E }��

13As reported in [60] and in the original [38] by Girard.
14[60] p.33.
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Let now B and E be negative alienated behaviours. Then

B
¸

E = (E �⊗B�)�

To end this section we mention the completeness theorems, referring to
[38] for the proofs and de�nitions in standard ludics, and to [6] for the ones
in ludics formulated in game-semantics. Their statements are the following:

� Internal additive completeness: let K ≠ ∅, then⊕k∈K Gk = ⋃k∈J Gk,
i.e. there is no need for the bi-orthogonal closure.

� Internal multiplicative completeness: let G and H be alienated
behaviours, then G ⊗H = {D ⊙ C ∣ D ∈ G ,C ∈ G }; again, the bi-
orthogonal closure is super�uous.

� Full completeness: let Γ ⊢ ∆ be a MALL2 sequent Π1, and let D
be a design of the behaviour interpreting the sequent Γ ⊢ ∆. Then,
it exists a proof π of Γ ⊢ ∆ such that D = π∗, where π∗ is a design
interpreting the proof π.

2.2.5 Giving interaction a direction

Using an operation called pruning, inspired from a work of C. Fouqueré and
M. Quatrini [30] � where is presented in di�erent terms and more developed
� it is rather easy to force a direction on interaction, when considering a set
of designs or a behaviour.

The pruning we use is essentially the erasing of a �nal segment of a branch
in a design, that gets meaning once this pruned design is considered together
with other designs with a common base, and with carefully placed 6 on these
latters. This technique is a simple operation on designs with the same base
that, when put together in a set, allows interaction to not diverge only if it
visit branches in a speci�c order (thus giving it a direction). This is preserved
also once we close the set by bi-orthogonality to obtain a behaviour, that is
then called directed behaviour.

The pruning works in a rather simple way; consider the following design:

. . .

⋮
ξ.1.1 ⊢ (−, ξ.1.1,N)

⊢ ξ.1 (+, ξ.1,{1})
. . .

ξ ⊢
a pruning on the action (−, ξ.1.1,N) will look like this
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. . .

ξ.1.1 ⊢
p

⊢ ξ.1 (+, ξ.1,{1})
. . .

ξ ⊢
Pruning on negative actions is always a possible operation, since the last

action of a branch with no extension must be positive.

When putting together a design and one of its pruned versions, the com-
mon orthogonals will be the designs with which interaction respects the order
forced by the pruning: i.e. the pruned branch will always be visited last. We
improperly call pruned designs also directed designs.

Let us take back the interaction example, and then modify with the prun-
ing the positive design, to see what happens:

Example 2.2.31. D ∶

ξ.1.1.1 ⊢
(+, ξ.1.1,{1})

⊢ ξ.1.1
(−, ξ.1,{{1}})

ξ.1 ⊢

ξ.2.1.1 ⊢
(+, ξ.2.1,{1})

⊢ ξ.2.1
(−, ξ.2,{{1}})

ξ.2 ⊢
(+, ξ,{1,2})

⊢ ξ

C ∶

6
⊢ ξ.2.1.1, ξ.1.1.1

(−, ξ.2.1,{{1}})
ξ.2.1 ⊢ ξ.1.1.1

(+, ξ.2,{1})
⊢ ξ.1.1.1, ξ.2

(−, ξ.1.1,{{1}})
ξ.1.1 ⊢ ξ.2

(+, ξ.1,{1})
⊢ ξ.1, ξ.2

(−, ξ,{{1,2}})
ξ ⊢

E ∶

6
⊢ ξ.1.1.1, ξ.2.1.1

(−, ξ.1.1,{{1}})
ξ.1.1 ⊢ ξ.2.1.1

(+, ξ.1,{1})
⊢ ξ.2.1.1, ξ.2

(−, ξ.2.1,{{1}})
ξ.2.1 ⊢ ξ.2

(+, ξ.2,{1})
⊢ ξ.2, ξ.1

(−, ξ,{{1,2}})
ξ ⊢

Both C and E are orthogonal to D. C visits the ξ.1 branch �rst, and the
ξ.2 one later; E does the opposite instead. However

D∗ ∶ p
ξ.1 ⊢

6
⊢ ξ.2.1

(−, ξ.2,{{1}})
ξ.2 ⊢

(+, ξ,{1,2})
⊢ ξ

where p denotes a pruning on the branch starting with ξ.1 ⊢, is orthogonal
only to E : interaction cannot continue on ξ.1, since it is not introduced by a
rule anymore, but can only pass through ξ.2 ⊢. In conclusion E ∈ {D,D∗}�,
since it visits the ξ.2 branch �rst, while C ∉ {D,D∗}�; in this way we have
forced interaction to respect the order ξ.2 < ξ.1.
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Example 2.2.32. If we take the behaviour 1 = {Oneξ,Dai+ξ }, we can con-
sider ↑↓ 1. Its designs are:

(+, ξ,∅)
⊢ ξ.1.1
ξ.1 ⊢
⊢ ξ

;

6
⊢ ξ.1.1
ξ.1 ⊢
⊢ ξ

Another instance of ↑↓ 1, with a di�erent rami�cation of the �rst rule is:

(+, ξ,∅)
⊢ ξ.2.1
ξ.2 ⊢
⊢ ξ

;

6
⊢ ξ.2.1
ξ.2 ⊢
⊢ ξ

we can denote this di�erent instance with ↑↓ 12.

Now, if we consider the tensor of these two behaviours ↑↓ 1⊗ ↑↓ 1 (de�-
nition 2.2.30) we obtain:

⊢ ξ.1.1
ξ.1 ⊢

⊢ ξ.2.1
ξ.2 ⊢

⊢ ξ

;

6
⊢ ξ.1.1
ξ.1 ⊢

⊢ ξ.2.1
ξ.2 ⊢

⊢ ξ

;
⊢ ξ.1.1
ξ.1 ⊢

6
⊢ ξ.2.1
ξ.2 ⊢

⊢ ξ

;

6
⊢ ξ.1.1
ξ.1 ⊢

6
⊢ ξ.2.1
ξ.2 ⊢

⊢ ξ
The resulting set of design let interaction visit the two branches in no

particular order; it just has to visit both to get to 6 in all designs of the
set. If we wanted to give precedence instead to the designs of ↑↓ 1 obtaining
the directed behaviour ↑↓ 1 <↑↓ 12, where < is a directed tensor, we can
modify the second one in the following way:

6
⊢ ξ.1.1
ξ.1 ⊢

⊢ ξ.2.1
ξ.2 ⊢

⊢ ξ

↝

6
⊢ ξ.1.1
ξ.1 ⊢

p

ξ.2 ⊢
⊢ ξ
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by pruning the rule on ξ.2. This single design in the set is enough to
force interaction to visit the branches starting with ξ.1 �rst.

Remark 2.2.33. Note that the pruning (of designs) makes behaviours ir-
regular. Informally, a behaviour is regular if mixing two interaction paths
(i.e. visiting actions by alternating, at each step, the two paths) is still an
interaction path on the behaviour � that means there is an orthogonal design
determining that path during interaction15. Irregularity exactly expresses the
fact that the visitable actions of a behaviour cannot be visited in any order,
but only some speci�c paths are allowed.

15The formal de�nition is that a behaviour is regular if interaction paths are closed

under shu�e, a well de�ned version of the mixing we mentioned, found in [30].



3. Process calculi

Programs based on concurrent and parallel computation, where many agents
interact with each other, are widely used in various settings, thus increasing
the need of an abstract logical framework able to model and describe such
objects. The core notion is the one of communication and information ex-
change, more than the one of computation step, which brings us out of the
purely functional world.

In a communication-based concurrent computation there are many agents,
called processes, acting at the same time, which need to communicate � in the
form of sending and receiving information � to enable computation. To give a
semantic of concurrency, and an abstract setting to treat concurrent compu-
tation, we will introduce process calculi (or algebras as in [46]). We can start
by de�ning a labeled transition system (LTS), an abstract framework where
terms are reduced by performing a set of actions ; then, by adding communi-
cation between actions in the form of synchronization between them, we can
de�ne the Calculus of Concurrent Systems, in short CCS, �rst introduced by
Milner in [55], as the prototypical process algebra. Then we shortly present
an extension of CCS, and the more powerful π-calculus, based on name
passing.

3.1 LTS

De�nition 3.1.1. A labeled transition system (lts) is a ternary relation sub-
set of S ×Act×S, for a set S of states, and Act of actions. For s, s′ ∈ S and
α ∈ Act it is denoted

s→α s′.

We can give lts a syntax that will be later extended to de�ne processes.
An lts is de�ned thus

P,Q ∶= 1 ∣ α.P ∣ P +Q α ∈ Act

65
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1 is the empty lts1, α.P is the pre�x operation (we say that P is pre�xed
by α) and P +Q is the non-deterministic choice, or sum, an operation where
once one of the two terms is chosen, the other is discarded. With this syntax,
the set S of states is made by actions put together by the pre�x operation
and non deterministic sum. The lts associated to this syntax is made of
transitions →α depending on the action α which is pre�x of all other actions
(or member of a sum).

De�nition 3.1.2. The set of traces of a term P is

tr(P ) = {α1, . . . , αn ∣ P →α1 ⋯ →αn}.
P and Q are traces equivalent if tr(P ) = tr(Q).
With these basics notions we cannot still properly model concurrent com-

putation, nor communication between terms. The set of traces describes the
internal transitions that happen inside a term � its internal behaviour � but
cannot take into account an environment with which it may interact via
communication. To describe processes and communication we need to add
a notion of dual action and synchronization between duals, which happens
when putting terms in parallel composition.

To prepare for this extended setting, we de�ne a more re�ned notion than
trace equivalence to treat behavioral equivalence, the one of bisimulation:

De�nition 3.1.3. Let →⊆ S ×Act × S be a labelled transition system, and
R a binary relation on the set of states S.

R is a simulation if from PRQ and P →α P ′, for an action α, it follows
that ∃Q′ such that Q→α Q′ and P ′RQ′.

R is a bisimulation if it holds the same for Q, i.e. if PRQ and Q→α Q′

implies that ∃P ′ such that P →α P ′ and P ′RQ′.

The following facts hold:

� The empty and identity relations are bisimulations (straightforward
from de�nition).

� The class of bisimulations is closed under inverse, composition, and
arbitrary unions.

� The union of all bisimulations is thus a bisimulation, denoted with ∼
(called bisimilarity).

� An intersection of bisimulations is, in general, not a bisimulation.2

1Note that the standard notation is 0; we will explain later our reasons to use 1 instead.
2For reference, see [4].
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As we are more concerned with communication rather than computation,
we can imagine that when two processes interact, there are some internal
computations that produce an output, which then is sent to the other pro-
cess during synchronization of actions (the moment where communication
happens); these internal computations, however, are not observable.

We can thus add to an lts an internal action τ , which cannot synchro-
nize with the environment. In this sense the term a.τ.b.1 is equivalent to
a.b.1; however the τ action is not completely irrelevant with respect to the
behaviour of a process. For example, if we have a + b as a non-deterministic
choice, and we add a τ action before each member, becoming τ.a + τ.b, it
becomes an internal choice, since a transition on τ is independent from the
environment.

In [46] the τ is called silent action, and it is not observable from an
external viewpoint. In general, it is removable only if redundant, i.e. if doing
a τ transition does not a�ect the possible evolutions � the intermediate steps
and resulting states � of a term. Indeed, in these cases the τ action can
be considered invisible from both a syntactic and semantic point of view.
However, in the presence of a choice, for example a.P + τ.1 (which is not
equivalent to a.P ) or τ.a + τ.b, it cannot be erased, since we cannot know
which option can be kept.

By adding the internal action τ we get a weak lts :

De�nition 3.1.4. A weak lts is an lts ⇒⊆ S ×Act ∪ {τ} × S, where τ ∉ Act
is a distinct internal action. A transition is de�ned thus:
⇒α= (→τ)∗ if α = τ ;
(→τ)∗ →α (→τ)∗ otherwise.

where ∗ is a �nite sequence of transitions.

This notion of weak transition system is naturally extended to bisimula-
tions. R is a weak bisimulation if it is a bisimulation with respect to a weak
transition system ⇒, where two transition steps between bisimilar terms can
be matched without counting τ transitions.

3.2 Milner's Calculus of Communicating Sys-

tems

By adding parallelism, and enabling synchronization between actions to an
lts we have all the tools needed to represent concurrent computation. The
process algebra which we obtain as result is the Calculus of Communicating
Systems, in short CCS, �rst introduced by Milner in [55].
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The �rst step in building CCS is the notion of dual action. The set of
actions Act is extended in this way:

A = {a, a ∣ a ∈ Act}.

Where a is the dual of the action a. The dual is involutive, i.e. it holds
a = a. To obtain the full calculus we need to add the hidden or private action
operator, denoted ν, the parallel composition between terms, denoted P ∣ Q,
and the recursive operator, which has a variant as an exponential operator,
denoted as the linear logic exponential !. The recursive operator is of the
form A(a⃗) = P , in its more general version, with a ∈ A, is such that the same
construct A(b⃗), de�ned on a di�erent sequence of actions, can occur in P �
here lies the recursion. The exponential version !a.P instead duplicates the
process under !.

De�nition 3.2.1 (CCS). Terms of the Calculus of Communicating Systems
are called processes, denoted with P,Q,R,S, . . ., and are built by the fol-
lowing grammar:

P,Q ∶= 1 ∣ a.P ∣ a.P ∣ (P ∣ Q) ∣ (P +Q) ∣ νa(P ) ∣ A(a⃗)

where a ∈ A, with A = {a, b, c, . . .} a denumerable set of actions, called chan-
nel names. For each a ∈ A, exists its dual a, such that a = a. More in
details:

� 1 is the empty process, from which any process is built.

� a.P and a.P are, respectively, the positive action pre�x and the
negative action pre�x.

� P ∣ Q is the parallel composition of P and Q.

� P +Q is the non deterministic choice or sum of P and Q.

� νa is the private name operator or hidden action operator, that
makes all channels named a inside its scope hidden from the environ-
ment.

� A(a⃗) is the recursive operator on the parameters a⃗ ∈ A, that allows
recursive de�nitions of processes.

We assume that any process is built starting with 1, the empty process,
who has no dual. While the original syntax use 0, we instead use 1 because
the empty process is not only the neutral element of the sum +, but also of
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the parallel composition P ∣ Q; moreover, our interpretation in ludics shows
a clear multiplicative behaviour and a correspondence with the linear logic
unit 1. The hidden action operator ν binds a channel name a, making it
private for future communication purposes: only a dual channel name inside
the scope of the same ν may communicate with it. If a channel name is
not in the scope of a ν, then its free. With fc(P ) we denote the set of free
channel names of P , and with bc(P ) the set of bound channel names.

The core of CCS lies in its communication-based reduction. An lts can
be de�ned for CCS, and then can be re�ned by considering a particular case
of reduction, called execution, where we can synchronize dual channels. The
relevant notions are hence parallelism and synchronization: we can consider
the names a, b, . . . as channels on which parallel processes synchronize in or-
der to communicate. A synchronization can happen when two dual channels
are the most external pre�xes of two processes in parallel composition � i.e.
are minimal channels of each process, w.r.t. the pre�x order � as in a.P ∣ a.Q;
once the synchronization is performed, the resulting process will be P ∣ Q,
consuming the used channels (execution is indeed resource sensitive). In the
case of CCS, there is no data sent or received, what matters is where and
when synchronizations happen, and thus how a process is transformed during
communication with the environment, and which intermediate forms it ob-
tains, that determine all the possible transformations of a process, depending
on the environment.

The most basic interpretation of P = a.P ′ is therefore �P is ready to
synchronize on the channel a�. Communication may happen only on channels
ready for synchronization, or equivalently available for execution, and only
when there is a dual channel in another term in parallel composition also
ready for synchronization. Instead of de�ning an lts for CCS (which can
be found in [4], p.62), since we would not make much use of it, we will give
directly some examples and then de�ne execution as the proper reduction
relation for normalization of processes.

3.2.1 Execution as a reduction semantic

An lts for CCS let us erase a channel as a transition, with some restrictions
for the ν and +: in the �rst case the name in question must not be private � i.e.
under the scope of ν � and in the second we must discard the member of the
sum not concerned with the transition. As a few examples, let P = a.1 ∣ a.1,
then

P →a 1 ∣ a.1→a 1 ∣ 1
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has the same result than

P →a a.1 ∣ 1→a 1 ∣ 1

and both pairs (a, a) or (a, a) can be denoted as an internal transition of P

P →τ 1 ∣ 1.

The transitions we want to allow are only pairs of dual channel names
ready for synchronization, with no pre�x blocking them (we often say external
channels). However, we do not care if the channels are contiguous or far away,
and moreover since the empty process 1 cannot synchronize we want it to
be a neutral element with respect to parallel composition. We will therefore
consider processes up to the following congruence relation:

De�nition 3.2.2 (Structural congruence). Structural congruence is the small-
est congruence relation, denoted ≡, such that parallel composition and + are
commutative and associative, + also idempotent, and 1 is the neutral ele-
ment of parallel composition and sum; i.e. P + P ∣ R + Q ≡ Q + R ∣ P ;
P ∣ (Q ∣ R) ≡ (P ∣ Q )∣ R; P ∣ 1 ≡ P ; P + 1 ≡ P ; and such that

νa(P ∣ Q) ≡ νa(P ) ∣ Q if a ∉ fc(Q)

νa(P ) ∣ νb(Q) ≡ νa νb(P ∣ Q) ≡ νb νa(P ∣ Q) if a ∉ fc(Q), b ∉ fc(P )

A(b⃗) ≡ [b⃗/a⃗]P if A(a⃗) = P.

Our choice of using 1 to denote the empty process also comes from our
interpretation of parallel composition, that shows to be a multiplicative op-
eration, rather than additive: its correspective in ludics will be a modi�ed
version of ⊗, which we saw being the representation of the linear logic tensor
⊗, a multiplicative connective.

Before de�ning execution we need to add some notation to the syntax.
Execution is, in general, a non deterministic and non con�uent operation,
and that is due to the fact that channel names are not unique. However, it
is still a resource-sensitive operation. We thus want a way to discriminate
di�erent occurrences of the same channel name; to this end we are adding
to the syntax a set Loc = {l,m,n, o, . . .} of locations: unique labels for each
occurrence of a channel name.

With LocP we note the set of locations labeling channels of a process P .
Therefore a process will be of the following form:

P = al.Q ∣ am.R ∣ bo.S.
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The execution relation is the core of the calculus, and tells us how processes
communicate and transform. It happens between a pair of dual channels
occurrences, thus of same name and opposite polarity. In this case we say that
the two channels synchronize, and that there is communication between
them. Two channels are ready for synchronization only if they have no pre�x,
i.e. they are the �rst channels of two processes in parallel composition (the
last added by action pre�x), and thus minimal with respect to the pre�x -
induced partial order: this makes execution a synchronous procedure3.

De�nition 3.2.3 (Execution). Execution is the following relation on CCS
processes, up to structural congruence:

νa (am.P + P ′ ∣ al.Q +Q′) ∣ R →{(m,l)} νa (P ∣ Q )∣ R

denoted by → along with as label a pair of locations naming dual channel
names. →∗ is the transitive re�exive closure of →, and is denoted in the fol-
lowing way: P →∗

∅ P , and if P →∗
e⃗ Q→∗

i⃗
R then P →∗

e⃗∪i⃗ R, where e⃗ and i⃗ are
sets of disjoint pairs of dual channels.

An execution sequence is said maximal if there is no synchronizable pair
(bm, bp) that can extend the sequence.

Regarding the newly introduced locations, with subjP (l) we denote the
channel name labeled by l, and with polP (l) the polarity of said channel. We
can mirror the pre�x order via a partial order on locations, and then de�ne
some relations on synchronizable pairs of dual channels using the partial
order on their locations as support. These relations are essentially the causal
and con�ict relations of event structures4, a model of CCS-like calculi [68],
that we will de�ne later (de�nition 3.2.9).

De�nition 3.2.4 (Location order). Let P be a CCS process and l,m ∈ LocP .
The location order on P , denoted by <P , is the partial order on LocP such
that l <P m if l labels a pre�x of the channel labeled by m. So, if P = xl.Q,
l <P m for every m ∈ LocQ.

A location stands for a particular occurrence of a channel name in a
process; being a 1-to-1 correspondence, we do not distinguish between a
channel occurrence and the location which labels it. Note that the sets LocP ,
subjP (l), polP (l), with l ∈ LocP and the order ≤P completely characterize a
process up to structural congruence (it characterize its congruence class).

Instead of traces as in a lts, for execution we have pairings :

3Execution can, in general, be modi�ed in order to allow communication independently
by the pre�x order. This makes the calculus asynchronous instead.

4In the original version: [55].
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De�nition 3.2.5 (Pairing). A pairing of a CCS process P is a subset
c ⊆ C of a partial involution C over LocP , such that for all l, subjP (l) =
subjP (c(l)), polP (l) = −polP (c(l)) (each channel is paired with a dual one,
thus forming an executable pair).

A pairing is consistent if ≡c<P≡c is acyclic, where ≡c is the smallest equiv-
alence relation containing c, and dom(c) is downward closed with respect to
<P .

A pairing is maximal if there is no consistent extension of dom(C), and
is complete if ∀l ∈ LocP , l ∈ dom(c) or l ∈ img(c).

Each consistent pairing correspond to the indexing of a possible execution
on P (actually many indexing, up to permutation of the pairs that respect
<P ).

3.2.2 Non determinism and non-con�uence

The execution relation is non deterministic at its core, due to the non unique-
ness of channel names, and the presence of the sum +, which also induces
non-con�uence. For instance in

νa (a.P ∣ a.Q ∣ a)

we have two a channels ready for synchronization, but only one a available
as a counterpart. The fact that in each state of a process there are di�erent
possible executions excluding each other naturally generates forking paths
and multiple normal forms, i.e. states where no further execution is possible.

This is always the case if there is a sum Q1 +Q2 ∣ . . . in a process P such
that Q1 and Q2 are unique in P , and Q1 ≠ Q2.

Example 3.2.6. Let

P = am.bh.S ∣ al.ck.Q ∣ an.bi.R

there are two possible execution steps:

� P →(m,l) bh.S ∣ ck.Q ∣ an.bi.R

� P →(m,n) bh.S ∣ al.ck.Q ∣ bi.R

(we use circular brackets when only one pair is used). Each execution makes

di�erent channels ready for synchronization: in the second case (bh, bi) is
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a new possible execution, while in the �rst b
i
is blocked; moreover, the �rst

execution brings to a normal form, while the second admits further reductions.
Therefore, we have di�erent execution sequences and normal forms.

With the sum it is clear that if

al.P +Q ∣ am.P ′ +Q′ →(l,m) P ∣ P ′

then we can no longer access to Q,Q′, and thus once a choice has been made
we have a permanent fork in the execution path.

In order to properly characterize execution we want to be able to directly
deal with synchronizable pairs, and de�ne relations on them that can tell us
the necessary and su�cient conditions to perform an execution step on any
given pair. To this end we introduce the following notion:

De�nition 3.2.7 (synchronizations). A synchronization of a CCS process
P is any pair of dual channel names (al, am) such that al, am ∈ P . The set
of synchronizations of P is denoted SP , its elements i, j, u, v, . . ..

� We say that a channel name a or a location l belongs to a synchro-
nization u, denoted a ∈ u or l ∈ u, if al belongs to the synchronization
named u.

� Synchronizations order is induced by pre�x order on channel occur-
rences: for i, j ∈ SP we say i ≼SP j if ∃l ∈ i and m ∈ j such that l <P m,
with l,m ∈ LocP .

� A synchronization is principal if both its locations are minimal w.r.t
<P .

Note that the synchronization order admits cycles, since it may be that
i ≼SP j and j ≼SP i, if a location of i is smaller than a location of j and vice-
versa: indeed, this is the case with deadlocks in the process. For instance

P = a1.b2 ∣ b3
.a4

has two synchronizations u = (a1, a4) and v = (b2, b
3), and is deadlocked.

We have that a1 is blocking b2 and b
3
is blocking a4; in this case it holds that

u ≼SP v and v ≼SP u, since each synchronization has a channel blocked by
one belonging to the other.
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De�nition 3.2.8 (XOR). Let P be a CCS process, and i, j ∈ SP . Then,
i ∩ j = ∅ if ∀l ∈ i,∀m ∈ j, l ≠ m. with l,m ∈ LocP . If i ∩ j ≠ ∅, then i and j
have a channel name occurrence in common. Then,

XP = {(i, j) ∣ i, j ∈ SP , i ∩ j ≠ ∅}

we call XP the xor, or con�ict, relation of a process P , and (i, j) a xor
clause, or con�ict pair. For every i ∈ SP , let xor(i) = {j ∈ SP ∣ (i, j) ∈ XP}.

The xor relation tells us when two synchronizations can't be in the same
execution sequence. If two synchronizations have a location, so a channel
occurrence, in common then one excludes the other from the same sequence,
since channels are consumed during execution. The relation can obviously
be applied also to channels of two processes in a +.

Event structures

Event structures, introduced �rst in [59] by Nielsen, Plotkin and Winskel, are
a causal model of concurrency, part of the true concurrency models. They
are closely tied to CCS, as Winskel gave an interpretation of CCS into event
structures in [68], showing that event structures are a model for CCS-like
calculi. Since we will also give some hints of the relation between event
structures and our work later, and form a connection with a speci�c paper
on confusion-free event structures and linear strategies ([27], in chapter 7),
we brie�y introduce them here.

De�nition 3.2.9 (Event structure). An event structure is a triple
⟨E ,≤,⌣⟩ such that:

� ⟨E ,≤⟩ is a partially ordered set, where elements of E , denoted e, e′, e1, . . .,
are called events, E is at most countable, and ≤ is called causality re-

lation.

� The downward closure of S ⊆ E is ⌈S⌉ = {e′ ∶ e′ ≤ e, e ∈ S}. If S is a
singleton {e}, it is denoted ⌈e⌉.

� ⌣ is an irre�exive symmetric relation, called con�ict relation, such
that for every e1, e2, e3 ∈ E it holds

(e1 ≤ e2 ∧ e1 ⌣ e3) → e2 ⌣ e3

In this case we say that the con�ict e2 ⌣ e3 is inherited from e1 ⌣ e3; if
a con�ict is not inherited it is immediate, denoted ⌣µ.



75

� Causal order and con�ict are mutually exclusive.

� Two events that are nor in a causal nor con�ict relation are said con-

current.

� The set [e) = ⌈e⌉ ∖ {e} is the enabling set of e.

The particular case of event structure we will mention are confusion-free
event structures. To de�ne them we need the following notion:

De�nition 3.2.10 (Cell). A cell c is a maximal set of events, with respect to
≤, that are pairwise in immediate con�ict, and have the same predecessors,
i.e. the same enabling set. Therefore

e, e′ ∈ c→ e ⌣µ e′ and [e) = [e′)

De�nition 3.2.11 (Confusion free). ⟨E ,≤⟩ is confusion free if the follow-
ing hold:

� Immediate con�ict is transitive:

∀e, e′, e′′ ∈ E , (e ⌣µ e′ ∧ e′ ⌣µ e′′) → e ⌣µ e′′

� Any two events in immediate con�ict have the same predecessors, i.e.
any two events in immediate con�ict form a cell.

Therefore confusion-free event structures are event structures where choices,
in the form of con�icts between events, are localized to cells.

For its use and meaning, we can see the xor relation on CCS processes
as the con�ict relation of event structures, and pairs of dual channel names
as events that can synchronize. Note that the con�ict relation is hereditary
in event structures, while ours are only local. With the same parallelism in
mind, we can call concurrent two synchronizations u1, u2 ∈ P such that are
neither in a xor relation, nor in an order relation, i.e. such that (u1, u1) ∉ XP
and neither u1 ≼SP u2 nor u2 ≼SP u1.

Value-passing CCS

We give some hints of an extension of CCS where data, as values, can be
sent and received during synchronization, which brings CCS a step closer
to the more complex π−calculus. Values, however, are distinct from channel
names, and are considered atomic objects as booleans or integers. We have
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thus a countable number of values V al = {v0, v1, . . .}. The set A of channels
is modi�ed in this way:

A = {a(v), a(v) ∣ a ∈ A, v ∈ V al} ∪ {τ}

The last ingredient are variables id ∶∶= x ∣ y ∣ . . . ranging over values, which
together with these latters gives us a generic de�nition of term:

t ∶∶= v ∣ id
with v ∈ V al.

We can consider a(id) as an input action, which receives a value v on
the channel a, and a(t) as an output action sending a value v on a. We also
want to be able to test values for equality, and act accordingly, thus we need
to add to the syntax [v = v′]P,Q, which is the process that runs P if v = v′,
and Q otherwise.

The execution relation works as in CCS, but now the output channel
sends a value, and the receiving one (input) substitutes a variable in its
process with the data received:

a(v).P ∣ a(x).Q→a,a P ∣ [v/x]Q

where the value v has substituted x in Q. For the equality clause we have:

[v = v]P,Q→ P [v = v′]P,Q→ Q if v ≠ v′.

While in this way data-passing can be represented, the π−calculus is
a more general and expressive setting since the values passed are channel
names themselves, which may enable further communication. A process so
can change its internal form during communication.

3.3 π-calculus

Despite not being the focus of our work, due to its large use and importance,
being a more complex and expressive process algebra5, we present the π-
calculus as an extension of value-passing CCS.

As we anticipated channels in the π-calculus exchange values which are
channel names themselves, thus enabling new synchronizations, and modify-
ing the process internally at each step. It is widely used as a system to model

5As denoted in [50], extensions of the π-calculus have almost the same expressive power
than actual concurrent programming languages.
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concurrent and distributed programs (used for web services for example), by
using type systems that check for communication safety and observance of
communication protocols, as done with session types [50, 64].

We can see the π-calculus as an extension of value-passing CCS, where
an output action x(v) sends a channel name v to an input action x(y); for
instance

x(y).P ∣ νz (x(z).Q) →x,x νz ([z/y]P ∣ Q).
The polyadic variant of the π-calculus is the most used, where a vector of
values v⃗ can be sent and received, and usually the communication can happen
only on private channels.

Let {x, y, z, . . .} be a countable set of variables for channel names of A.
Then the syntax of the π-calculus is the following:

P,Q ∶∶= 1 ∣ x(y).P ∣ x(y).P ∣ (P ∣ Q) ∣ νx(P ) ∣ [x = y]P ∣ !(x(y).P )

The semantics is pretty much the same as value-passing CCS, where: 1
is the empty process; x(y).P is the input action pre�x, waiting to receive a
name z on x, and substitute y with it, becoming [z/y]P ; x(z).P is the output
action pre�x, sending a name z on the channel x, becoming P ; P ∣ Q is the
parallel composition of P and Q; νx is the hidden (or new) name operator;
[x = y]P runs P if x = y, otherwise is unde�ned; and the exponential (in
linear logic fashion) !(x(y).P ), de�ned on inputs, waits to receive a name z
on x, and then duplicates in [z/y]P ∣ !(x(y).P ) (it is a di�erent way to give
a recursive de�nition of a term).

α-renaming can be performed on names bound by ν, making them closer
to constants ; while the names attached to an input, which are going to be
substituted, can be seen as variables. We have left aside the non deterministic
sum +, because it can be encoded in the syntax, up to a certain extent6.

Execution in the π-calculus works exactly as we showed from the example.
Without restriction to communication on private names only, we have the
following relation:

x(z).P ∣ x(y).Q→(x,x) P ∣ [z/y]Q

extended by rules for ! and [x = y]

x(z).P ∣ !(x(y).Q) →(x,x) (P ∣ [z/y]Q ∣ !(x(y).Q);

[x = x]P → P.

6See [4], p.95, for the details.
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sometimes the ν might note that the sent or substituted channel is fresh.
For example in νy(x(y).P ), a name y unique to P is going to be substi-
tuted in P after communication, di�erent from x. Or νy(x(y).P ) denotes
that a fresh channel is going to be sent in output, and x becomes free after
communication.

Variants

Skipping the discussion about bisimulation in the π-calculus (outside the
scopes of this work) we already noted that the most widespread version of
the π-calculus is the polyadic one, where multiple channel names can be
sent and received at the same time in a single communication � obviously
the input and output action must agree on the arity of names exchanged.
We simply allow inputs and outputs of the form x(y⃗ = y1, . . . , yn) and x(y⃗).

Another variant is the asynchronous communication, where output
actions are not ordered. This means that there is no notion of pre�x, and
thus there is no partial order between them, with respect to execution.

The π-calculus concludes our background chapters; the following chap-
ter starts the original part of the thesis and our research, by building the
fundamental notions and machinery needed to interpret CCS into ludics.



4. Interpretation of Multiplicative

CCS

The objective of this chapter is to carry out the �rst step of our corre-
spondence between the dynamic of CCS processes, that is execution (de�ni-
tion 3.2.3), and the dynamic of ludics designs, that is interaction (de�nition
2.2.15).

We say �rst step because the correspondence we de�ne here will only be
limited to a small, but relevant, part of CCS: to simplify the setting as much
as possible, this translation will be carried out, at �rst, only in a fragment
of CCS the multiplicative fragment, in short MCCS � as already de�ned in
[9], by V. Mogbil and E. Be�ara � that is without non deterministic choice
and recursive de�nitions. The name is due to its correspondence with proof
nets of the multiplicative part of linear logic (restricted to its multiplicative
connectives). While lacking some fundamental tools used to de�ne interesting
processes and functions, there are still good theoretical reasons to start with
the simple fragment consisting of only action pre�x and parallel composition,
explained in subsubsection 4.1.1.

Later in chapter 6 we will interpret also the non deterministic choice +
and private name operator ν, and at last attempt to extend the correspon-
dence to recursive de�nitions in subsection 6.3.3.

This �rst step is divided into two parts : in section 4.1 we translate pro-
cesses into sets of designs. The correspondence, on ludics' side, requires
a more complex object: instead of translating a single process into a sin-
gle design, we use a well-structured set of designs, that contains as elements
modi�ed copies, via pruning (de�nition subsection 2.2.5), of the same design,
whose chronicles have an explicit correspondence with the basic elements of
the translated process.

The reason why a single design is not enough to get a meaningful trans-
lation is explained during the construction of the set.

79
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To start, in subsection 4.1.1, we give the de�nition of MCCS found in
[9], as a restriction of CCS grammar; then in subsection 4.1.2, we associate
toMCCS processes a graph (noted GP ), in order to have a more geometrical
representation of the structure of processes: in particular the structure given
by the partial order on locations <P (de�nition 3.2.4) of aMCCS process P ,
i.e. the pre�x order on channels, whose correct representation inside ludics
is one of the core steps of the interpretation.

Note that the graph associated to a process is only a di�erent presenta-
tion of a MCCS process that let us put in advance the features of a process
relevant to execution and for its interpretation as interaction, and shorten a
few proofs, but is not a necessary step for either the interpretation or the
results that will follow.

Then, we exploit the pruning technique (de�ned in subsection 2.2.5) to
indirectly represent the pre�x order of channels of a process P , once a cor-
respondence is de�ned between elements of the process, and branches of a
design (de�ned in subsection 2.2.2).

In de�nition 4.1.14, is presented a constructive de�nition of the base de-
sign associated to a process P : a naive correspondence between the elements
of the process relevant for execution (the channel names labeled by locations,
the set of synchronizations SP , and the con�ict relation XP ) and branches
of a design in ludics, without carrying on their structure. That means that
the partial orders <P and ≼SP are not represented in the base design.

This construction is made by merging together (recall de�nition 2.2.29)
smaller negative design as premises of a positive one. These negative de-
sign are made by chronicles of at most 2 rules, a negative one (with 1 or 2
premises) followed by a positive one, and the address introduced by the �rst
rule is associated to a speci�c element of the process that we are interpreting.

In 4.1.15, we de�ne restriction designs by using the pruning to modify
copies of the base design with the aim to represent the order <P , and the
con�ict relation XP .

The intended result is that these modi�ed copies, called directed modi�-
cations, once put in a set together with the base design (denoted DP ), force
interaction with the orthogonal set to respect the relations <P and XP . This
set is then closed by bi-orthogonality to obtain a connected and directed be-
haviour, that is the main element of the interpretation in ludics of the process
P , noted JP K.

This last step is actually super�uous, because it is not necessary at all to
de�ne a correspondence between the dynamics of processes and ludics. We
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could actually stop the translation at the set containing the base design along
with the restriction designs, and then de�ne a correspondence between the
possible execution paths on P , and interaction paths between this set of de-
signs and its orthogonal. However, there are a few reasons behind this choice,
mentioned in the introduction and further explained in subsection 4.1.4.

The �rst part of the correspondence between dynamics that we are seek-
ing thus takes the form of a naive translation, of processes into sets of designs.
The main result of this section is therefore the de�nition of the translation
betweenMCCS processes and sets of ludics' designs, composed of a base de-
sign and restriction designs, then closed by bi-orthogonality into behaviours.
Then, the machinery needed to form a correspondence between the dynamics
of MCCS on one side, and the one of ludics on the other, is de�ned on these
sets. The �nal objective of the work is to extend this correspondence to the
full calculus; objective that will be only partially achieved.

In section 4.2, the second part is carried out, by �nally de�ning a cor-
respondence between execution on a process P and interaction between the
behaviour translating P and its orthogonal set.

In this section we develop the tools needed to form the correspondence be-
tween execution on MCCS processes and interaction between designs, linking
together the two dynamcis. The main results of this part are the de�nition
of execution associated to an interaction path (de�nition 4.2.4) and a theo-
rem stating that the possible interactions on the process interpretation JP K
characterize all the execution paths of a MCCS process P (theorem 4.2.14).

We start by de�ning the notion of admissible execution on a process P ,
to note a valid execution on the process that follows its reduction rule; this
notion is used to de�ne the concept of execution associated to an interac-
tion, to extract from an interaction path between BP and B�

P an admissible
execution.

Then in subsection 4.2.1 we show that the information coded in the inter-
pretation of P , i.e the sets LocP , SP and XP , are the necessary and su�cient
information to describe the possible execution paths of the process, that lead
to its multiple possible reduced normal forms ; i.e. they are exactly the infor-
mation we need to describe the dynamic of a process.

Finally, in subsubsection 4.2.1, we prove Theorem 4.2.14, stating that JP K
characterize all executions of P , for a speci�c meaning of characterize. The
theorem is split into two parts, and shows that the interpretation of a process
P , JP K, can completely describe the possible reduction sequences on P via
interaction with its orthogonal, and that every interaction on JP K describes
a possible execution on P .
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4.1 From Multiplicative CCS processes to sets

of designs

4.1.1 Multiplicative CCS

We introduce themultiplicative fragment of CCS, in shortMCCS, as de�ned
in [9]. Terms of MCCS, noted by the letters P,Q,R, . . ., are built by the
following restricted grammar:

De�nition 4.1.1. P,Q ∶= 1 ∣ al.P ∣ am.P ∣ (P ∣ Q)
With a, a ∈ A , and l,m ∈ LocP .

We use 1 to denote the empty process, instead of the traditional 0, since
it shows a multiplicative behaviour and a clear connection with the multi-
plicative unit 1. A is the a denumerable set of channel names, and LocP is
a denumerable set of locations, to discriminate di�erent occurrences of the
same channel. The function associating a location to each channel name oc-
currence is a bijection, thus each channel occurrence receive an unique label
that cannot appear elsewhere. This means that when processes are put to-
gether via parallel composition, then a renaming of locations may occur, in
order to preserve the 1-1 correspondence between channel occurrences and
locations. The dual operator is involutive, i.e. it holds that a = a.

The operations which we left aside to simplify the setting are:

� the non deterministic sum P +Q.

� the new operator νa(P ), which binds and makes a channel a private.

� the recursive operator A(a⃗).

The structural congruence, partial order <P , the induced order on cuts
≼SP and the xor relation XP , as well as execution, are the same as we de�ned
when introducing CCS (in section 3.2).

Why MCCS is enough

The interpretation will be carried out, at �rst, for the simple multiplicative
fragment of CCS that we introduced. The lack of non deterministic choice
and recursive de�nitions does take away a lot of expressive power; however
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our objective is to �nd a correspondence between the dynamics of the two
systems, thus all we care about is the essential part of a process algebra, the
bare minimum that allows us to perform execution on a process. Indeed that
is one of the reasons we stick to CCS in the �rst place: it is the most basic
and primitive process algebra, and does not have the same expressive power
of the much more used π-calculus. What we are doing is taking away from
CCS all that is not essential with respect to execution as we de�ned it in
subsection 3.2.1.

What is needed to perform execution, i.e. to let two processes communi-
cate, are channel names of dual polarity and the parallel composition opera-
tion, that enables execution. Therefore, we are restricting the syntax to this
simple fragment, that we call multiplicative due to its linear logic interpre-
tation into multiplicative proof-nets. We show later that an extension to the
non deterministic choice + and private name operator is actually possible,
while recursive de�nitions are much harder to interpret in an intrinsically
linear setting as ludics.

4.1.2 Graph associated to Multiplicative CCS processes

In this section a graph will be associated to processes, with the objective
to achieve a more geometrical presentation of the process, in order to put
in advance the elements necessary to our interpretation: the set SP (recall
de�nition 3.2.7) of synchronizable channels, and the con�ict relation between
them XP .

The presentation is not necessary to prove properties or results about the
interpretation, but is meant to help intuition and simplify some steps. A
reduction on the graph, matching execution on the process it is associated to,
will also be de�ned. This reduction will help us understand how the relevant
relations mentioned above change with execution.

In the following, let P be a MCCS process.

De�nition 4.1.2. The graph associated to P , noted GP , is a directed graphs
composed of:

� As set of nodes the set of locations of the process P , LocP , consid-
ered as a multiset, where each location can appear multiple times,
depending on how many synchronizations it belongs to. Each location
is labeled with either synchronizations of SP or with �.

� Formally, we note nodes as locations labeled in the following way:
{l∗ ∣ l ∈ LocP and ∗ = u ∈ SP such that l belongs to u, if there is such
u, otherwise ∗ = �}
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We say l belongs to u with the meaning of de�nition 3.2.7.

All locations appear in the multiset at least once. A location l appears
more than once only if it belongs to more than one synchronization.
For instance we would have the nodes lu, lv if l belongs to two synchro-
nizations u and v.

� As set of edges the set E ∶ {(l∗,m∗) ∣ m <P l} with <P the partial
order on locations of de�nition 3.2.4. We note an edge with l∗ →m∗.

Example 4.1.3. Let P = a1.b2 ∣ a3.b
4 ∣ a5 ∣ b6

.c7 ∣ c8.

SP = {v = (a1, a3);w = (a1, a5);u = (b2, b
4);x = (b2, b

6); y = (c7, c8)}.
XP = {(v,w), (u,x)}.

GP =

1v 3v

1w 5w

2u 4u

2x 6x

7y 8y
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The xor relation is easily identi�able, since there is one instance of a
location for each synchronization they belong to: if two synchronizations label
the same location, then they form an element of XP .
De�nition 4.1.4. One-step reduction on GP is a rewriting operation on
graphs, de�ned as follows:

1. If exists a pair li,mi in GP (i.e. a pair of nodes consisting of two
di�erent locations labeled with the same synchronization), such that no
edge departs from either l or m (i.e. ¬∃o such that l → o or m →
o)1 then GP can be rewritten to G ′ = GP ∖ {l∗,m∗}, a subgraph of GP
determined by the following steps:

� we erase from the nodes all occurrences of l∗ and m∗, and all
edges between them and the other nodes;

� any location o∗ such that ∗ = u ∈ SP , and l or m belongs to u
(which means that o is, necessarily, the only location labeled with
u) is rewritten to o�.

2. If there is no such a pair, then no rewriting is possible.

The reduction on GP on a pair (li,mi) is noted by GP →i
G G ′.

Reduction on GP is the transitive closure of →G.

Example 4.1.5 (Reduction on GP ). Let P and GP be the, respectively, the
process and the graph of the previous example. Reduction on v ∈ SP induces
the following rewriting:

1v 3v

1w 5w

2u 4u

2x 6x

7y 8y

v
G

5�

2u 4u

2x 6x

7y 8y

Now, further reductions are possible on (2u,4u) or (2x,6x), but not on (7y,8y)
(since 7 is not minimal with respect to <P ). The reduction on (2u,44) would
leave GP in the following normal form:

1Note that this means that the locations l and m are minimal with respect to <P
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5� 6�

7y 8y

It holds that:

Lemma 4.1.6. GP →i
G G ′ if and only if P →i P ′, and G ′ = GP ′

Proof. Straightforward by de�nition of reduction on GP , and execution on
P . Erasing a synchronizable pair of channels directly correspond to erasing
a synchronization in execution. Since the edges are also erased, and chan-
nels (represented by their location in the graph) that are not synchronizable
anymore has their label rewritten to �, the resulting graph G ′ is equal to the
graph associated to P ′, by de�nition of GP .

Lemma 4.1.7. If GP →i⃗
G ∅ for some i⃗, then execution is possible on all

channels of P , there are no cycles in the partial order on synchronizations
≼SP , and S = {(li,mi) ∈ GP ∣ i ∈ i⃗} is a maximal pairing (de�nition 3.2.5),
and P →i⃗ 1.

Proof. A cycle in the partial order on SP is represented in GP by a (li,mi)
and (hj, kj) such that, without loss of generality, l →G h and k →G m. This
prevents either couples to ever be a sink, and so be erased. If GP = ∅, then
all locations, and so all channel names, have been erased by reduction; this
implies that the corresponding execution on P gives 1 as result. The sequence
of synchronizations indexed by i ∈ i⃗ is then a maximal pairing.

Corollary 4.1.8. If GP →i⃗
G GP ′ and GP ′ ≠ ∅ but there are no more pairs of

sinks in GP ′ with the same label, then S = {(li,mi) ∈ GP ∣ i ∈ i⃗} is a maximal
pairing.

Proof. Obvious by de�nition of GP and reduction on GP . If there are no
more sinks, there are no synchronizations, and therefore no further reduction
is possible.

Example 4.1.9. Let P = a1.b2 ∣ a3 ∣ b4
. Synchronizations are u = (a1, a3)

and w = (b2, b
4). The graph associated to P can easily be reduced to the empty

graph, in two reduction-steps.



87

GP =

1u 3u

2w 4w

u
G

2w 4w

w
G ∅

Remark 4.1.10. The role of the graph de�ned here is to put in advance the
parts and structure of processes that is needed to form the correspondence in
dynamic we seek; in other words, the essential elements needed to describe
process behaviour. While being a tool originally made only to help intuition,
we found a clear resemblance to event structures (de�nition 3.2.9), in par-
ticular when seen as a model for processes: the relations <P and XP , which
are going to be the core of our interpretation, are obviously linked to ≤ and ⌣;
locations can be seen as single events, and synchronizations as a new single
event tied to both its members by the relation ≤. We will give further details
about the connection between event structures and our work in chapter 7.

4.1.3 The translation of Multiplicative CCS processes

The aim of the interpretation is to build a behaviour capable of characterizing
a process by representing all and only its execution paths, via interaction
with its orthogonal. We need to build designs which will make only the right
interactions reach 6. To this end, we need a way to forbid interaction to
take certain paths, while allowing others; in particular, we want it to respect
the partial order <P and, by consequence, ≼SP (we omit the subscript when
obvious by the context), as well as the con�ict relation XP , once we have
interpreted the relevant elements of the process into designs.

The solution is to exploit the pruning (de�ned in subsection 2.2.5), which
lets us build sets of designs where interaction with the orthogonal is forced to
visit certain branches (the ones generated by the rami�cation of the �rst rule)
before others. Once each branch is associated to an element of the process, we
will be able to make interaction respect the pre�x order and con�ict relation
that we de�ned on the process.

We are going to exploit this technique to represent <P , and XP , by build-
ing directed designs representing the two relations locally ; i.e. one design
will represent one element of the relation. Then, once we put them together
as elements of a set, interaction with the orthogonal set will automatically
respect the full relations, by transitivity.
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Freedom requisites

What we need next is to associate to each synchronization the local requisites
that makes it available for execution, and to each location the synchroniza-
tions that let us erase it. To this end, we introduce the following:

De�nition 4.1.11 (Freedom requisite). Let P be a MCCS process. Let
F () be a function going from SP ∪ LocP to subsets of SP and LocP . With
freedom requisite of a synchronization i ∈ SP or location l ∈ LocP we mean
the output of, respectively, F (i) or F (l).

F () is de�ned by cases:

1. Let i = (al, ah) ∈ SP , then, if i is not minimal with respect to <P
F (i) = {m,n ∈ LocP ∣ l →m ∨ h→ n are edges of GP}.

Otherwise F (i) = ∅.
The de�nition selects the very precedent location, if there is any, of each
location labeling the channels of i.

2. Let l ∈ LocP , then
F (l) = {i ∈ SP ∣ l ∈ i}

Note that if l does not belong to a cut, then F (l) = {∅}.
In this case the de�nition selects all the synchronizations (possibly none)
to which a location l belongs to.

Note that

1) If i is principal, F (i) = ∅.

2) If i has only one minimal location, then F (i) = {p}, where p is the very
precedent location of l or h.

3) If i has no minimal location, then F (i) = {m,n} such that, without loss
of generality, m <P l, n <P h, and m,n are the respective predecessors
of l, h.

Remark 4.1.12. It holds that XP and freedom requisites cover any possible
case of not-executable synchronization. In the simple setting of MCCS, a
synchronization is not executable if its blocked by a location l not belonging
to a synchronization (such that F (l) = ∅), or if its locations are subordinate
to two di�erent sides of the same xor clause. So if u = (al, am), al > bn,
am > bp, v = (bn, bq), w = (bp, bq), and bn, bp do not belong to any other
synchronization, then (v,w) ∈ XP , and u is not executable.
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Building the Base design

In this section we build the base design of a process P , denoted DP , by
merging together multiple basic negative designs, de�ned for each location,
synchronization, and xor condition, via a positive n-ary action. The result is
a positive design with the base of each of these negative designs as premise
of a positive rule, and the negative designs as sub-designs of this base one.

De�nition 4.1.13 (Assignment function). Let [ ]P be an injective function
associating elements of a process P to addresses with the same pre�x (as
ξ1, . . . , ξn). The domain of [ ]P is LocP ∪ SP ∪ XP . With [i]P , [l]P and
[(u, v)]P = xoru & xorv, we denote respectively the address assigned to the
synchronization i, the location l or the xor condition (u, v) in the base design
DP . For instance, we have [i]P = ξ.1, [l]P = ξ.3, and [(u, v)] = ξ.4.

We call [ ]P assignment function.

The base design will serve as a naive interpretation of a process; then
we will build restriction designs as directed designs, i.e. modi�cations of the
base design using the pruning. There will be one restriction for each freedom
requisite, which represents the local order and con�ict relation between syn-
chronizations and locations. Then, both the restrictions and the base design
will be put together in a set that generates a behaviour by bi-orthogonal
closure, along with the full order and con�ict relation by transitivity.

De�nition 4.1.14 (Base design).

� Let x ∈ SP ∪LocP

G[x]P =

[x]P .1.1 ⊢
⊢ [x]P .1
[x]P ⊢

� Let (u, v) ∈ XP , then

w[u, v] =

xoru.1 ⊢
⊢ xoru

xorv.1 ⊢
⊢ xorv

xoru & xorv ⊢ &

where xoru and xorv are the sub-addresses of xoru & xorv. We note
the last rule with & since it is a binary negative rule, corresponding
to the linear logic connective &. They serve as check-addresses, not
corresponding to an element of P , but linked to the respective synchro-
nizations u and v. One branch will have precedence on [u]P , the other
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on [v]P through dedicated restriction designs, thus e�ectively separating
the two interaction paths in a non-con�uent way.

We have
DP = ( ⊗

x∈SP∪LocP ,(u,v)∈XP

{G[x],w[u, v]}).

Where ⊗ is a sole positive action with the elements of the set as sub-
designs, i.e the premises generated by the rami�cation of the positive rule.

The result of the operation is a rather �at interpretation, where all the
elements needed to characterize execution are naively put together, while
losing all the relevant relations between them: nor the partial order nor the
con�ict relation are coded in this way.

What we need is a way to recover these relations during interaction, and
to this end we are going to modify the base design accordingly to the freedom
requisites that we de�ned, obtaining a set of restriction designs.

Restriction designs

Let P be a MCCS process, and DP its base design.

De�nition 4.1.15 (Restriction Designs). Let P be an MCCS process. The
set of restriction designs for elements of SP , LocP and XP (also called
non commutative restrictions), is the set

R(P ) = R(SP ) ∪R(LocP ) ∪R(XP )

where each element of the union is a set of modi�ed copies of DP , regarding
speci�c elements of P (we omit the subscript P when denoting the associated
addresses). These copies of DP have only a few speci�c branches changed
with prunings or daimons 6, while all the other chronicles � represented by
the various ⋯ � are left untouched.

Restriction designs for synchronizations.

Let i ∈ SP . If F (i) = {l}, then R(i) is a copy of DP modi�ed in the
following way:

R(i) =
. . .

⊢ [l].1 6

[l] ⊢ . . . [i] ⊢
p

. . .

⊢ ξ
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If F (i) = {m,n}, then R(i) is the following pair of designs:

⋯

6
⊢ [m].1
[m] ⊢ ⋯

p
[i] ⊢

⊢ ξ
⋯

6
⊢ [n].1
[n] ⊢ ⋯

p
[i] ⊢

⊢ ξ
If F (i) = ∅, for i ∈ SP , then there is no R(i). R(SP ) denotes the set

of all R(i), for each i ∈ SP .

Restriction designs for locations.

Let l ∈ LocP . We de�ne R(l) by cases.

1. If l is a minimal location (with respect to <P ), and F (l) = {i1, . . . , in},
then R(l) is the following design:

. . .

⊢ [i1].1
6

[i1] ⊢ . . .

⊢ [in].1
6

[in] ⊢ . . . [l] ⊢
p

. . .

⊢ ξ

2. If l is not minimal, let m be the immediate predecessor of l, then, we
have two cases:

(a) If F (l) = {i1, . . . , in}, , then R(l) is the following pair of designs:

⋯

6
⊢ [m].1
[m] ⊢ ⋯

p
[l] ⊢

⊢ ξ
and

. . .

⊢ [i1].1
6

[i1] ⊢ . . .

⊢ [in].1
6

[in] ⊢ . . . [l] ⊢
p

. . .

⊢ ξ

with a 6 over each G[i1], . . . ,G[in].

(b) If F (l) = {∅}, then the second design becomes:

. . . [l] ⊢
p

. . .

⊢ ξ
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With R(LocP ) we denote the set of all R(l) for each l ∈ LocP .

Restriction designs for the con�ict relation XP .
Let (u, v) ∈ XP , then R(u, v) is the following pair of designs:

. . .
⊢ xoru 6 xorv.1 ⊢

⊢ xorv
xoru & xorv ⊢ . . . [u] ⊢

p
. . .

⊢ ξ

and equivalently for v:

. . .

xoru.1 ⊢
⊢ xoru ⊢ xorv 6

xoru & xorv ⊢ . . . [v] ⊢
p

. . .

⊢ ξ

With R(XP ) we denote the set of all R(u, v) for each (u, v) ∈ XP .

With R(P ) we denote the set

R(XP ) ∪R(SP ) ∪R(LocP ).

Remark 4.1.16. The non commutative restrictions for locations might seem
super�uous at �rst: indeed, we are making explicit the local pre�x order
regarding each location, i.e. the very preceding location in <P must have
precedence in interaction. This might seem useless to add, if we already have
the induced order on synchronizations, which are the executable part of the
process: the pre�x order would be implicitly respected by interaction by just
following the freedom requisites on synchronizations. The local precedence
order, however, is necessary when combining interpretations to represent
parallel composition. In this case, when new synchronizations, and execution
paths, are generated, then we need the local order on locations to deduce the
freedom requisites for these new synchronizations.

De�nition 4.1.17. Let P be a MCCS process. Then let

BP = {DP} ∪R(P )

be the set of generators of the behaviour

BP = B��
P = ({DP} ∪R(P ))��

Since all the restriction designs are modi�cation of DP , and thus have
the same �rst action, BP is a connected and irregular behaviour.
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Then, the interpretation of P is

JP K = (BP , [ ]P )

the pair formed by the behaviour and the assignment function.

The interpretation aims to describe, using a superimposition of terms,
the behaviour of a process. In order to get a modular interpretation, we will
de�ne an operation based on ⊗ on behaviours, but on the set of generators,
with some further technical and arti�cial steps, but still based on the merging
of designs ⊙.

Although the interpretation is rather �at, since the structure of the pro-
cess is indirectly coded in it, the relations expressing this structure are gen-
erated through the e�ect of the restriction designs on interaction. Having
multiple restriction designs let us easily and locally modify each single one,
by breaking the relations we are interpreting in smaller local pieces. When
building a process by parallel composition, action pre�x, or any other oper-
ation, we can directly act on single restriction designs to account for each
change in the order or con�ict relation, without the need to build the inter-
pretation from scratch for every change in the process. In this way achieving
a modular interpretation is easier than dealing with a structure coded in a
single design. Coding the order and con�ict relation information explicitly
would be a huge complication of the base design, and for a possible read-back
of the process. Moreover many di�culties arise when trying to relate di�er-
ent addresses during interaction, that need to express multiple local relations
about the same element of the process, since the only way in which addresses
are linked is via justi�cation sequences.

4.1.4 Why Behaviours?

When we close the set of the base and restriction designs by bi-orthogonality,
we obtain a behaviour; however, a bi-orthogonal closure is not needed to
achieve our results, and to form the intended correspondence of dynamics
between processes and ludics that is the main objective of our interpreta-
tion. Indeed, we never use a property of behaviours in any formal proof.
Still, there are a few reasons to actually take this super�uous step and con-
sider the bi-orthogonal closure of the de�ned set.

Behaviours and types. The �rst reason to consider is that behaviours
are the closest thing to a type in ludics: they are the type of a set of de-
signs, and working with behaviours is a natural step in ludics. We already
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mentioned that, when interpreting linear logic into ludics, formulas are in-
terpreted as behaviours, and we showed how to linear logic connectives can
be represented as operations on behaviours (in subsubsection 2.2.4). Using
behaviours to interpret processes let us form a connection between the type
of a certain set of design, and the type of a process, in the sense of the way
it interacts with the environment.

Behaviours are one of the most interesting and studied aspect of ludics,
therefore by forming a correspondence between processes and behaviours,
we may be able to exploit the operations and properties found about them
to deepen the connection. In particular, checking what happens on one
side of the correspondence when something �interesting� is performed on the
other. For instance, in the next chapter, we will see how to interpret parallel
composition of two processes P and Q as an operation on their respective
interpretations JP K and JQK. It turns out that in a trivial case, where P and
Q cannot communicate at all, parallel composition can be represented by ⊗
(de�nition 2.2.30). Moreover, a reduction-like operation can be de�ned on
JP K that matches execution on P (in section 5.2.11); by using this operation
a few properties can be deduced. This reduction operation on the inter-
pretation actually matches an already existing ludics operation, de�ned on
connected behaviours, called projection (found in [38]), that commutes with
the bi-orthogonal closure.

Does behaviours really add something? While behaviours poten-
tially give us a lot of already existing tools to work with, they are not actually
needed : indeed, while operations on processes do correspond to interesting
operations on behaviours (a tensor-like operation for parallel composition,
and a reduction for execution), the converse is not true. We have not found
particular properties or operations on behaviours that if applied to the inter-
pretation of a process JP K result in something interesting on the side of the
process P . The interpretation of a process P is easily lost by operations that
modify its designs, and moreover all of the above operations matching par-
allel composition and execution can still be de�ned on the set of generators,
without bothering with the bi-orthogonal closure.

However, there is another reason to consider behaviours, despite being
theoretical rather than practical, since it does not help regarding the techni-
cal purpose of our interpretation, that is �nding a correspondence in dynamics
between CCS and ludics.

Completeness. By considering the bi-orthogonal of a set of design, we
are taking into account all designs that behave in the same way as those of
the set. This give us a closure of the set with respect to its orthogonal.
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Indeed, from a theoretical point of view, the core of the interpretation is
actually the orthogonal of the set of generators BP . That is because a design
is its own semantics, since its structure makes explicit its meaning, that is
the way it interacts with the other designs. Since the important feature of
our interpretation is the correspondence in dynamics, what we care about are
actually the possible interaction paths on the base design, once limited by the
restriction designs. These interaction paths are actually already explicited
by the designs in the orthogonal set B�

P , since they tell us exactly how the
interaction will go: which branches are going to be visited, and in which
order. Thus, closing the set of generators with respect to its orthogonal,
i.e. performing the bi-orthogonal closure, give us a completeness regarding
the interaction paths that form the correspondence of dynamics, i.e. all the
designs successfully interacting with B�

P (i.e. reach 6 during interaction),
that therefore is the set giving meaning to the interpretation.

However this closure to achieve completeness is part of a more general the-
oretical need of logic, that is justi�ed by the incompleteness theorems. Since
we know that there are sets not only incomplete (with respect to something
else, as provability or interaction in our case), but rather not completable, it
has some importance to wonder if the set we are working with is completable
or not.

The fact that the bi-orthogonal closure does not a�ect the correspondence
between MCCS processes and sets of designs is relevant, especially consid-
ering the fact that this might not hold anymore once the interpretation are
extended to full CCS with recursive de�nitions. Indeed recursion and repli-
cation require at least an extension also of the syntax of ludics, and thus
of interaction, meaning that a bi-orthogonal closure might not preserve the
interpretation anymore.

4.2 Connecting execution to interaction

In order to form a correspondence between dynamic of a process P and its
interpretation JP K we need to be able to extract from interaction some infor-
mation that can be read as an execution on the process. We need to establish
which steps of interaction correspond to execution on which synchronization,
in such a way that JP K contains all and only interaction paths that describe
actual executions on the process P , i.e. each interaction must have an asso-
ciated execution on P , and each execution must be associated to (at least)
one interaction.

The notion we need is the one of visited actions inside an interaction path.
Recall that actions considered at each step by interaction are said visited
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(de�nition 2.2.15), and an interaction path on a design is simply the sequence
of visited actions. If we restrict our attention to one design participating in
an interaction session (inside a cut-net or with another single design), for
instance the base design DP inside the set of generators of BP , we can de�ne
the actions visited on this particular design as a simple restriction on the
interaction path.

Remark 4.2.1. De�ning an interaction path as the sequence of actions vis-
ited during interaction is also found in [30], where with ⟨D ←R⟩ is denoted
the sequence of actions of D visited during interaction with R, where (D,R)
is a closed cut-net. The formal de�nition is by induction on the number of
normalization steps.

Our aim is to give a de�nition of associated execution in order to make
any design orthogonal to BP describe an execution, even if the empty one; at
the same time the directed restriction designs (de�nition 4.1.15) will assure
us that if a design is orthogonal to BP , then its associated execution (on
the process P ) is admissible, with the following meaning:

De�nition 4.2.2. Let P be a MCCS process, and i⃗ = i1, . . . , in be an ordered
sequence of synchronizations of P . We say that →i⃗ is an admissible execution
on P if {i1, . . . , in} is a consistent pairing (de�nition 3.2.5).

Remark 4.2.3. If i⃗ describes an admissible execution (on P ), then it re-
spects the partial order <P (thus also the induced partial order ≼SP on synchro-
nizations), and the xor conditions XP (i.e. there are not two synchronizations
in the sequence that are in a xor relation), thus being a possible execution path
on P . This follows immediately from the de�nition of consistent pairing.

Using the sequence of visited actions with respect to an interaction path
we can de�ne the notion of associated execution (to an interaction path).
Borrowing the notation of [30], we denote the sequence of visited actions of
a design D during interaction with another design C with ⟨D ← C⟩. It is the
sequence k1, . . . , kn ⇂D, with k1, . . . , kn the sequence of actions visited by the
interaction between C and D; i.e. the actions ki, . . . , kj, 1 < i ≤ j < n, such
that ki, . . . , kj ∈ D.

De�nition 4.2.4 (Associated execution). Let P be a MCCS process, and
let C ∈ B�

P . The execution on P associated to C is the execution →i⃗, where
the sequence i⃗ = i1, . . . , in is a sequence of synchronizations such that

∀i ∈ i⃗, (−, [i],{{1}})(+, [i].1,{1}) = G[i] ∈ ⟨DP ← C⟩
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ordered as they are visited by the interaction path. We often say execu-
tion associated to ⟨DP ← C⟩ to make explicit the base design involved in the
de�nition. To note a generic associated execution, not tied to a particular
counter-design, we say execution associated to an interaction path.

Let us give a more precise intuition with an example.

Example 4.2.5. Let DP =

⋯

ξ.1.1.1 ⊢
⊢ ξ.1.1 (+, ξ.1.1,{1})4

ξ.1 ⊢ (−, ξ.1,{{1}})3

ξ.2.1.1 ⊢
⊢ ξ.2.1 (+, ξ.2.1,{1})8

ξ.2 ⊢ (−, ξ.2,{{1}})7

⋯
⊢ ξ (+, ξ, I)0

C=

⊢ ξ.2.1.1, ξ.1.1.1,∆ 610

ξ.2.1 ⊢ ξ.1.1.1,∆ (−, ξ.2.1,{{1}})9

⊢ ξ.1.1.1, ξ.2,∆ (+, ξ.2,{1})6

ξ.1.1 ⊢ ξ.2,∆ (−, ξ.1.1,{{1}})5

⊢ ξ.1, ξ.2,∆ (+, ξ.1,{1})2

ξ ⊢ (−, ξ,{I})1

Assume ξ.1 = [i] and ξ.2 = [j]. Then ⟨DP ← C⟩ =

(+, ξ, I)0(−, [i],{{1}})3(+, [i].1,{1})4(−, [j],{{1}})7(+, [j].1,{1})8.

Therefore the execution associated to ⟨DP ← C⟩ is P →i →j. Furthermore
i, j are principal synchronizations, since they are visited before any other
branch associated to locations or synchronizations in DP .

Remark 4.2.6. It obviously holds that an action i is principal � equivalently
P →i is a valid execution (synchronization on the channels of i is possible)
� if and only if there is a C ∈ B�

P such that visits G[i] before any other
rami�cation of DP corresponding to a synchronization. Indeed, this is possible
only if F (i) = ∅, meaning that there are no restriction designs for i except
its xor conditions.

The proof of this fact follows immediately by applying the de�nitions of
principal synchronization, execution on P and associated execution.

Also it must be noted that the opposite direction of the result we are
aiming at � i.e. the property stating that if the execution associated to a
design is admissible, then the design itself is orthogonal � does not, and must
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not hold, otherwise the correspondence between execution and interaction
that we seek would be lost. This is because the 6 in the restriction designs R
is used to impose an order on interaction, but not to force the interaction. For
example, if we do not want to interact with a certain location l, we don't have
to visit the branches corresponding to elements of F (l) (synchronizations, or
[m]P such that m <P l), which are the only rami�cations of R(l) ending with
a 6. Therefore we could have a counter design respecting all restrictions, but
not visiting the branch of [m]P at all, thus not being orthogonal to R(l),
unless it ends with a 6 itself. Due to how we have build JP K, since in DP there
are no daimons, a 6 must be present in the counter-designs: nevertheless,
we could apply the de�nition of associated execution even to a design not
ending with 6, which will thus not be orthogonal. If we wanted to include
all the designs that have an admissible associated execution, we would need
to force daimons on the base design, but in this way any interaction would
stop immediately, since it would encounter a 6 on any branch, and so the
correspondence itself would not make sense.

Remark 4.2.7. The fact that only the counter-designs of BP end with 6
implies that, even on maximal interaction paths, a 6 is only found in designs
C ∈ B�

P . This means by de�nition, that BP is a pure behaviour, a concept
tied with type safety and the interpretation of errors when typing functions
and data types, but not particularly relevant in our case.

In this way each execution sequence will be associated to multiple in-
teraction paths, and so counter-designs: this is mostly due to the fact that
we have rami�cations neutral with respect to execution, for example those
corresponding to xor conditions, the various xoru & xorv ⊢, which do not
correspond to synchronizations or locations, therefore cannot be linked to
execution directly, and the order in which they are visited is not relevant
with respect to execution. This also means that the number of interaction
steps that can be linked to a single execution step is not �xed.

Remark 4.2.8. The requisite to associate an execution to an interaction is
rather weak, but straightforward. The only condition we are imposing is that
the actions corresponding to G[i] are visited during interaction, without any
constrain on the sequence of actions preceding or following G[i], with the
order by which they are visited as the order of the associated execution. This
simple de�nition works because of the restriction designs: by coding the local
pre�x order � and xor conditions � they force any interaction with BP to
respect <P , assuring us that it does correspond to an admissible execution,
regardless of the context.
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4.2.1 A correspondence in dynamic

To summarize, we have the following elements:

P ∈MCCS ∶ GP : BP :

LocP ,SP ,XP ⇒ vertexes ∈ GP ⇒ sub designs G[x],w[u, v] ⊂ DP

<P edges (u, v) ∈ A ∅

F (⋯) directed edges
and labels on
nodes

designs R(⋯)

P →i reduction on GP interaction between BP and B�
P

In order to prove the correspondence between execution and interaction,
we will focus on each step, to justify its choice and prove that it ful�lls its
tasks.

LocP ,SP ,XP (de�ned in subsection 3.2.1). At �rst we will consolidate the
fact that these are all and only the elements and relations on the process rel-
evant for execution: locations, pairs of dual channels (synchronizations), and
pairs of synchronizations which share a location, forming a con�ict relation.
In GP the structure of the process is represented via <P as edges between ver-
texes (the locations), where locations are duplicated for each decoration, i.e.
the synchronizations to which they belong. It is then immediate to identify
the full relation XP .

On the side of ludics we are naively representing all these elements in
DP , forgetting the structure of the process. To each element is associated a
sub design, a sequence of actions instead of a single one. This is because a
design, for the purpose of interaction, should always end with a positive rule.
Indeed when reaching a negative rule, the next step is checking the positive
directly above, since we are forced to perform a negative rule introducing the
negative address, whenever there is any.

Another reason is that the modi�cations on DP needed to shape the
restrictions are more natural in this way. If for example F (i) = l, and G[l]
were a single (negative) action, we would need to add a rule for the daimon
in R(i), above G[l], shifting the correspondence between the base design
and the restriction designs. Indeed, the intuition behind R(i) is that we can
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perform execution on i only if l has been already erased; thus execution on l
here means reaching the 6. But, if G[l] were only a single negative action,
then interaction would diverge immediately on it.

Lemma 4.2.9. LocP , <P , SP and XP give necessary and su�cient informa-
tion about the possible execution paths on P .

Proof. SP is obviously the executable/interactive part of the process. The
execution rule tells us that a pair of channels is ready for synchronization if
the both channels are external, i.e. minimal with respect to <P , which means
that they have no pre�x. <P on locations is associated to the pre�x order,
thus LocP is enough to recover this order via the restriction designs.

The other constrain on execution, that generates non-determinism and
non-con�uence, is the fact that channel names are not unique, and are con-
sumed during execution. Therefore a particular synchronization can some-
times prevent others to be executed, generating a permanent fork in the
possible execution sequences on the process, i.e. we have non intersecting
execution sequences. This is because execution is resource sensitive, and
channel occurrences can only be used once. Permanent forks in an interac-
tion sequence, which can potentially yield di�erent normal forms, arise only
� and not always � when a channel is part of one or more synchronizations
(or if we have a non deterministic choice +, which we are not considering for
now) which thus are in con�ict : the XP relation represents this con�ict, and
therefore each potential fork during execution.

Remark 4.2.10. The non-deterministic choice + will be represented by an
extension of XP , consistently with its nature as a con�ict relation � which is
used to represent + also in event structures [27].

<P (de�nition 3.2.4) describes the structure of P : the pre�x order be-
tween channels, and which sub-processes are in parallel composition (lack of
order). However, execution does not need the whole partial order, but only
a local order relation: a pair of dual locations is ready for synchronization if
there is no pre�x blocking it. Therefore it su�ces to represent it only locally,
by checking the immediate predecessor of the channel name occurrence in
question.

F (⋯) (de�nition 4.1.11) de�nes a two level alternating dependence rela-
tion, still by checking <P locally: synchronizations are freed by locations, and
locations by synchronizations and the immediate preceding location. The
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main fact is that this is enough to respect the partial order on synchroniza-
tions during interaction: the full pre�x order is then transitively recovered
by considering the totality of the possible interactions.

Lemma 4.2.11. Let P be a MCCS process. The freedom requisites for SP
and LocP correctly respect <P and the induced order on synchronizations ≼SP ,
therefore R(P ) forces interaction on BP to respect the pre�x order as done
by execution on processes.

Proof. Let, without loss of generality, i = (al, am) ∈ SP .

� If F (i) = {h, k}, with h, k ∈ LocP , then h <P l and k <P m.

� If h ∈ j and k ∈ u, with j, u ∈ SP , we implicitly have j, u ≼SP i. This
holds because j ∈ F (h) and u ∈ F (k).

� The corresponding directed designs R(i), R(l) and R(m) force inter-
action to respect the (local) order given by freedom conditions: [j]P
must be visited before [h]P and [u]P before [k]P , that on their hand
must be visited before [i]P , that have precedence on [l]P and [m]P .

� By transitive closure, [u]P and [j]P must be visited before [i]P ; [k]P
and [h]P must be visited before [l]P and [m]P . Therefore interaction
on BP respects <P and ≼SP .

We want to obtain a complete characterization of execution via interac-
tion between BP and B�

P , with the following meaning:

De�nition 4.2.12. Let P be a MCCS process. If each execution P →i is
associated to an interaction path on JP K, and the associated execution of
each interaction path on JP K is admissible (in the sense of de�nition 4.2.2),
we say that JP K characterizes execution on P .

Remark 4.2.13. What we are describing here is not a bijection: as we
already noted, an execution sequence may be associated to multiple interaction
paths. This is because of the null interaction steps with respect to execution,
i.e. steps that do not visit actions of G[i] for some synchronization i. We
could de�ne a general notion of big step and an equivalence relation on
counter-designs in order to have a bijection, but it would be a variable notion
and not needed to form the correspondence we seek.

What we want to prove is:
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Theorem 4.2.14. Let P be a MCCS process. JP K = (BP , [ ]P ), charac-
terizes all executions on P .

We split the proof of the theorem in two main results, the �rst going from
interaction to execution, and the second from execution to interaction; these
results are Corollary 4.2.16 (or its constructive version Lemma 4.2.19), and
Lemma 4.2.20.

From interaction to execution

Lemma 4.2.15. Let P be a MCCS process. It holds that
1) C�BP ⇔ 2) the execution associated to ⟨DP ← C⟩, with DP�C, is

admissible; i.e. any G[x], with x ∈ SP , and any G[l], with l ∈ LocP , in
⟨DP ← C⟩ is visited accordingly to ≼SP and <P , and the interaction never
visits both G[u] and G[v] with (u, v) ∈ XP .

Proof. 1) ⇒ 2) holds because, as proved in lemma 4.2.11, R(P ) forces in-
teraction to respect <P and ≼SP , thus the execution associated to C (with
respect to BP ), by de�nition, respects the same order. R(XP ) also prevents
interaction from visiting both synchronizations of a xor clause, since a &
forces an exclusive choice in interaction.

2) ⇒ 1): We have that C�DP (note that this implies that C ends with a
6); if furthermore ⟨DP ← C⟩ respects <P ,<LocP and XP , then C�R(P ), and
thus C ∈ B�

P = B���
P = (B��

P )� = B�
P ; therefore C�BP .

As an immediate corollary, and as �rst direction of theorem 4.2.14, we
have that (by de�nition of admissible execution 4.2.2):

Corollary 4.2.16. Let P be a MCCS process. ∀C ∈ B�
P , the execution

associated to ⟨DP ← C⟩ is admissible in P .

and furthermore

Corollary 4.2.17. Let P be a MCCS process, and i ∈ SP . Then i is princi-
pal (def 3.2.7) if and only if ∃C ∈ B�

P such that ⟨DP ← C⟩ visits G[i] before
any other G[j] with j ∈ SP .

Proof. Trivially, if i is principal then F (i) = ∅, and R(i) = ∅, therefore
G[i] can be interacted with before any other rami�cation corresponding to
synchronizations. Only the xor conditions of i are required to be visited
before G[i].
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For the other direction, if ⟨DP ← C⟩ visits G[i] before any other G[x],
then its associated execution starts with i, and thus P →i is an admissible
execution, i.e. i is a principal synchronization.

The lemma and corollaries assure us that there are no bad interactions on
JP K: any orthogonal design always describes an actually possible execution
path on P .

Remark 4.2.18. Note that we indiscriminately talk about interaction and
orthogonal design; that is possible due to the lack of distinction of syntax and
semantics in ludics. A design explicitly tells us how it interacts: therefore a
design is an interaction, with respect to its orthogonals.

Corollary 4.2.16 can be re-phrased as a one-step correspondence between
execution and interaction in the following way

Lemma 4.2.19. Let P be a MCCS process. Then P →i is an admissible
execution if and only if ∃C ∈ B�

P such that the execution associated to ⟨DP ←
C⟩ starts with i.

Proof. The direction ⇐ is the same as in the corollary 4.2.17.

For ⇒ we can note that if P →i, then i is a principal synchronization,
therefore F (i) = ∅. Then, we can easily build a minimal orthogonal design
interacting �rst (and only with) G[i]. Let [i]� =

⊢ [i].1.1,∆ 6

[i].1 ⊢∆
(−, i.1,{{1}})

⊢ [i], xori1 .1, . . . , xorin .1,∆ (+, i,{1})

xorin ⊢ [i], xori1 .1, . . . , xorin−1∆ (−, xorin ,{{1}})

⋮
xori1 ⊢ xori2 & xorj2 . . . , xorin & xorjn , [i],∆ (−, xori1 ,{{1}})

⊢ xori1 & xorj1 , . . . , xorin & xorjn , [i],∆ (+, xori1 & xorj1 ,{xori1})

ξ ⊢ (−, ξ,{I})

Then [i]��BP and the execution associated to ⟨DP ← [i]�⟩ is →i.

In ∆ must appear the address of each premise of DP , since the rami�ca-
tions of DP and [i]� must match. The sequence xori1&xorj1 , . . . , xorin&xorjn

includes all the addresses assigned to the clauses (i, x) ∈ XP , with x varying
on SP .
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From execution to interaction

We have thus tied interaction to execution, partially proving theorem 4.2.14.
To complete the other direction of the theorem, and complete the correspon-
dence between execution and interaction, we need the following lemma

Lemma 4.2.20. Let P be a MCCS process and i⃗ ∈ SP , with i⃗ = (i1, . . . , in).
Then P →i⃗ is an admissible execution if and only if ∃C ∈ B�

P such that →i⃗ is
the execution associated to ⟨DP ← C⟩.

Proof. The direction ⇐ holds by corollary 4.2.16.

For ⇒ we could be temped to split P →i⃗ Pn in P →i1 P1 →i2 . . . →in Pn,
and apply the one-step correspondence lemma (4.2.19) to each step. However
this is not possible, since a standard subject reduction theorem2 does not hold.
Nothing tells us that if P →i P ′ then JP K = JP ′K, and indeed it is not the
case, as we will see in section 5.2. The best approach would be to build a
counter design C with the intended associated execution. We can do this
by recursively building a counter design whose �rst steps are taken from the
one-step lemma.

We proceed by induction on the length of an execution sequence. Let
i = (al, am), then:

[i]� ∶= (+, xori1 & xorj1 ,{xori1})(−, xori1 ,{{1}}) . . .

. . . (−, xorin ,{{1}})(+, [i],{1})(−, [i.1],{{1}})
(+, [l],{1})(−, [l.1],{{1}})(+, [m],{1})(−, [m.1],{{1}})

where xori1 &xorj1 . . . xorin &xorjn are the addresses assigned to the xor
clauses for i, and l,m the locations of i. In a more synthetic representation:
∀x ∈ SP such that (i, x) ∈ XP , and for l,m ∈ i, we have

[i]� = w[i, x]� ∗G[i]� ∗G[l]� ∗G[m]�

where ∗ is the concatenation of rules in ludics.
We can de�ne E(⃗i) as the following design (with (+, ξ, I) the �rst action

of DP ):

� E(∅) = (−, ξ,{I})

� E(i1, . . . , in) = E(i1, . . . , in−1) ∗ [in]�
2In typing systems is expected that the type of a program does not change with reduc-

tion on the program, i.e. if P → P ′, then type(P ) = type(P ′). This is usually called a
subject reduction property.
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Given an execution i⃗, let C be the design E(⃗i)∗6. Then, by construction,
C ∈ B�

P and →i⃗ is the execution associated to ⟨DP ← C⟩.

Maximal executions and read-back of the process

With theorem 4.2.14 we have the necessary tool to see what happens with
maximal execution paths (de�ned in 3.2.3). A maximal execution path on
a process P is a reduction sequence that brings P to one of its normal
irreducible forms, that is a sequence that cannot be extended by further
synchronizations. From the correspondence execution-interaction we imme-
diately have:

Corollary 4.2.21. Let P be a MCCS process, and C ∈ B�
P . Then, the

execution →i⃗ associated to ⟨DP ← C⟩ is maximal if and only if ¬∃C ′ ∈ B�
P

such that →i⃗ is properly included in the execution associated to ⟨DP ← C′⟩;
i.e. such that ⟨DP ← C′⟩ extends ⟨DP ← C⟩ by G[j] ∉ ⟨DP ← C⟩ for some
j ∈ SP .
Proof. Let C ∈ B�

P such that its associated execution →i⃗ is maximal. Suppose
∃C′B�

P that extends ⟨DP ← C⟩ by some G[j]. Then by theorem 4.2.14, the
execution associated to ⟨DP ← C′⟩ is →i⃗ →j; however this is impossible, since
→i⃗ is maximal by hypothesis.

For the other direction of the implication, by theorem 4.2.14 all executions
have an associated ⟨DP ← C⟩, and thus indirectly at least one design C. If
there is no C′ ∈ B�

P such that its associated execution extends →i⃗, then {⃗i}
is a maximal pairing.

Another property that we can expect from the interpretation is the ability
to deduce, or read back, the state of the process, given an interaction path, or
just the sequence ⟨DP ← C⟩, for a C ∈ B�

P , without performing execution on
the process. Instead of determining the interpretation after an execution on
the process, we want to determine the state of the process after an interaction
of the interpretation with an orthogonal design.

We can easily de�ne a read back on the interpretation which satisfy this
property.

De�nition 4.2.22 (read back). Let P be a MCCS process, C ∈ B�
P , and

→i⃗ the execution associated to ⟨DP ← C⟩. The read back of ⟨DP ← C⟩, noted
[⟨DP ← C⟩], is

GP ∖ {l ∈ LocP ∣ l ∈ i⃗}
where l ∈ i⃗ means l ∈ j for some j ∈ i⃗.
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The operation we de�ned is simply a blind erasing on the graph GP of
the locations labeled with synchronizations part of the execution associated
to the interaction we performed (this implies an erasing of all edges to and
from the locations in question). We need to prove that the resulting graph
is indeed the result of the execution (or reduction in the case of GP ) on i⃗.

Corollary 4.2.23. Let P be a MCCS process, and C ∈ B�
P , and →i⃗ the

execution associated to ⟨DP ← C⟩. It holds that GP →i⃗
G [⟨DP ← C⟩].

Proof. Reduction on GP (de�nition 4.1.4) is the erasing from the graph of all
the nodes corresponding to two chosen locations, who are labeled with the
same synchronizationin at least one node (remember de�nition 4.1.2), and
the edges to and from these nodes. Given the sequence i⃗ = i1, . . . , in we know
that i1 is a minimal synchronization, since ⟨DP ← C⟩ respects ≼SP ; therefore
we can just erase the nodes corresponding to the locations l,m ∈ i1 from GP ,
and their edges. We can repeat the same reasoning on i2, . . . , in until we have
erased all the nodes labeled with locations of synchronizations in i⃗ obtaining,
at each step, a valid reduction sequence (at each step we are erasing pairs of
minimal locations). The graph resulting from this reduction is, by de�nition,
the read back [⟨DP ← C⟩].

Discussion

Theorem 4.2.14 is thus proven, and the correspondence well-de�ned. This
still opens a few interesting questions are about the limit cases of execution:
deadlocks, and the reduction to the empty process 1. The latter is closely
tied to what will be developed in section 5.2, where the interpretation as-
sociated to the empty process 1 will have a precise form in ludics, that is
the design One (de�ned in example 2.2.22). Deadlocks will be studied in
section 5.3, by using the notions of incarnation and material design (de�ni-
tion 2.2.23), that let us isolate in designs of a behaviour only their essential
part with respect to interaction, i.e. the branches actually visited by some
interaction with the orthogonal behaviour.



5. Properties of the Interpretation

This chapter is divided into four main parts, where each part is dedicated
to prove a di�erent property of the interpretation of MCCS processes in lu-
dics. Most of the properties rely on de�ning operations on the interpretation
JP K of a MCCS process P , to then be able to re�ect the results of these
operations back at the process, to represent fundamental constructors of the
syntax of MCSS, or simply check interesting properties of P directly on its
interpretation in ludics.

The objective of the �rst part, section 5.1, is to de�ne an operation on
JP K that interprets the parallel composition of two processes, making
the interpretation modular. This operation will be de�ned on the set of
generators, and is based on the merging of designs ⊙ (de�nition 2.2.29), taht
is the core operation of ⊗ (de�nition 2.2.30) on behaviours. The goal is to
be able to represent the parallel composition of processes via a composition
of their interpretations, such that this composition is carried out as much as
possible via logical operations. As we will see, this is partially achieved.

Since it is often chosen as a fundamental operation of process algebras
that enables communication between two processes, being able to represent
in ludics parallel composition is an important step of the interpretation to
deepen the connection between the two systems.

The main results of section 5.1 are the de�nition of the operation � on
the interpretation of processes JP K, JQK (de�nition 5.1.16), called merging,
that interprets the parallel composition P ∣ Q, and proof that it commutes
with the interpretation operation (theorem 5.1.18), i.e. that

JP ∣ QK = JP K � JQK.

In the trivial case, when composing processes that cannot communicate,
there is a perfect match between parallel composition and the ⊗ on be-
haviours:

JP ∣ QK = JP K⊗JQK

107
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however many di�culties arise when two processes that have synchronizable
pairs of channels are put together: a tensor-like operation cannot handle the
increased complexity of two communicating processes, and some arti�cial
steps are required to make it work while keeping the core of the operation �
the merging of designs ⊙ � intact.

We start the section with a discussion on what cannot work as a ludics
counter-part of parallel composition on processes. Then, a few basic opera-
tions are de�ned on designs, that lead to the notion of compatibility with
respect to the merging of interpretations : the notion express the fact that
two designs can be merged without falling into inconsistencies.

These basic operations are then extended in order to consider the new el-
ements that are generated in the parallel composition of two processes P,Q,
and is applied to the interpretations JP K, JQK, in the de�nition of �. Even-
tually, the theorem on � mentioned above is proved, by considering a few
intermediate lemmas.

In section 5.2 we try to answer the question of how the interpretation of
an MCCS process change when execution is performed on the process. In
particular, what are the di�erences between the interpretation of a MCCS
process P , and one of its reduced forms P ′ after one execution step, and if
it is possible to pass from JP K to JP ′K via an operation on the interpretation,
without the need to get back at the starting process P .

The main result of this section is the de�nition of a reduction on the
interpretation (de�nition 5.2.11) JP K of a MCCS process P that matches
execution on processes. This operation is a slight extension of an already ex-
isting ludical operation called projection (found already in Girard's seminal
article [38]), that commutes with the bi-orthogonal closure, therefore can be
performed either on the set of generators or the associated behaviour. We
call this operation reduction since it actually erases speci�c chronicles from
the designs of the set or behaviour, which thus have a reduced form. The
projection operation, once applied to our interpretation, requires as a slight
extension that the same erasing it performs on the behaviour must be applied
also to the assignment function of JP K.

The reduction operation gives us a nice commutative property (theorem
5.2.12) between execution, reduction on JP K, and the interpretation operation
from P to JP K: given a MCCS process P and a principal synchronization u
(whose channels are minimal with respect to the pre�x order), then we can
pass to the interpretation JP K, and perform reduction on JP K based on u, to
obtain as result the interpretation JP ′K, where P →u P ′ is a valid execution.

This means that, given an MCCS process P , we can deduce from its
interpretation JP K all of its reduced and normal forms via reduction on JP K,
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without performing execution on P , all we need to know is the partial order
<P to identify principal synchronizations, that we have coded in JP K anyway.

By matching with the reduction on JP K execution paths that lead P to
the empty process 1 (if there is one such execution path), we obtain a remark-
able connection with linear logic, that also explains why we call the empty
process 1 instead of the standard 0. Indeed, in subsection 5.2.1 we show
that performing successive reductions on JP K, matching an execution path
→u1 ⋯ →un such that P →u1 ⋯ →un 1, has as result the behaviour generated
by the design One (de�ned in example 2.2.22 ), that is denoted 1, being the
interpretation of the linear logic multiplicative unit 1.

In section 5.3 we study the topic of deadlocked processes, and try to
�nd a few properties on the interpretation JP K that can tell us something
relevant on possible deadlocks in a (MCCS) process P .

We start with the de�nition of normal form (de�nition 5.3.1) of a pro-
cess P , then give the de�nition of deadlocked process (de�nition 5.3.5).

In subsection 5.3.1 is shown what a deadlock in a process P entails re-
garding interaction and the restriction designs R(P ): cycles in the partial
order <P and the induced order on synchronizations ≼SP means that we can
�nd in the restriction designs requirements impossible to satisfy. Then we de-
�ne a simple order relation on restriction designs that follows ≼SP to identify
deadlocks, which is then dismissed as not relevant since it is an extra-ludical
and extra-logical property, that is no di�erent than looking directly at the
order relations on the process itself.

Therefore, in subsection 5.3.2 we start analyzing the interpretation JP K
in search of a property that can tell us when a process P is deadlock-free.
The answer is found in the material design (de�nition 2.2.23) of the base
design DP , that can give us a su�cient but not necessary condition to decide
if the associated MCCS process P is deadlock-free (lemma 5.3.10); however,
it may be the case that P is deadlock-free, but the su�cient condition is not
satis�ed.

In subsection 5.3.3, a particular case of deadlocks is considered, that is
when they are super�cial, meaning that the channels involved in the cycle
are not blocked by a pre�x, and are directly accessible by the environment, as
for instance a process in parallel composition. In this limited case, we at-
tempt to �nd a way to solve them on the interpretation: that means be able
to identify them and add a minimal context, via merging of interpretations,
that will let the process unlock and continue execution. A partial solution is
eventually given in 5.3.19, despite being practically un-viable due to its its
complexity.
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In section 5.4, we extend the interpretation by representing the action
pre�x constructor of the syntax of CCS (the basic process constructor, that
let us extend P to a.P ) as an operation on the ludical interpretation of
processes. The result is de�nition 5.4.2, that exploits the same ideas of the
merging of interpretations with slight modi�cations, to achieve the same goal.

At last, in section 5.5, we examine the case of independent synchroniza-
tions � synchronizations that are not a pair belonging to ≼SP , so they can
be performed in any order � and reductions (execution paths or single steps
that commute): what causes forks in execution paths of MCCS processes
and CCS processes (also considering the non deterministic choice +), and
when these forks are not permanent, meaning that there are further execu-
tion steps that actually bring back two execution paths of a process P at the
same reduced form (thus possibly at the same normal form).

In the case of non-permanent forks caused by independend synchroniza-
tions of a MCCS process P , we give a diamond property in lemma 5.5.2,
proved by using di�erent successive reduction steps on the interpretation JP K:
the conclusion is that it doesn't matter in which order independent synchro-
nizations are executed, the resulting form of P is the same, as its interpreta-
tion in ludics.

5.1 Representing parallel composition

Let P,Q be MCCS processes, and JP K, JQK their respective interpretations
in ludics. The aim is to build the interpretation of P ∣ Q, JP ∣ QK, from
BP , BQ and the assignments [ ]P , [ ]Q, in the most natural way possible;
therefore to de�ne some operation JP K� JQK on interpretations that re�ects
P ∣ Q, such that JP K � JQK = JP ∣ QK.

The ideal result would be to be able to do this without touching the pro-
cesses at all ; so, given the interpretation for P and Q, be able to build the
interpretation of P ∣ Q without any kind of additional information on P and
Q (only what their interpretations tells us). To deduce the possible communi-
cations between P and Q, we need to extract the information about channel
names of P and Q, and how many times they occur : the only way to de-
duce the information without looking at the processes is from the assignment
functions [ ]P and [ ]Q, whose domains include SP ∣Q and LocP ∣Q.

Since new synchronizations, and thus execution paths, may arise in the
parallel composition (indeed it is what makes execution possible in the �rst
place, and characterize concurrent behaviour) we need to read-back from the
assignments the information about the process: how many occurrences of
each channel name there are in each process. By checking the domain of the
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assignments we can recover the information we need, since channel names
labeled by locations are included.

When we put two processes P and Q in parallel composition, however,
a renaming of their locations may be required in case of superimposition,
since they must be unique. This does not change the channel they label,
and neither the addresses assigned to each occurrence by the assignment. A
renaming could also be required on the addresses of the base designs DP (or
DQ), to induce the same substitution in the co-domain of [ ]P (or [ ]Q)
� that is, the rami�cations of the base designs � and avoid superimposition
between [ ]P and [ ]Q. Substituting an address induce an hereditary sub-
stitution also on its sub-addresses and the chronicles generated from there.

We may start by de�ning base uni�cation, i.e. a renaming of the addresses
in the bases of two designs, to make them compatible for the merging ⊙
(de�nition 2.2.29). Recall that the operation is de�ned for designs with
disjoint rami�cations, but same base: an uni�cation of the addresses of the
bases, and then a renaming of the rami�cation (of the �rst rule) of one of
the two designs will make the merging always possible.

De�nition 5.1.1 (Uni�cation). Let C be a design of base ξ0 ⊢ ξ1, . . . , ξn and
D a design of base ζ0 ⊢ ζ1, . . . , ζn of the same arity. The uni�cation (of
the bases) of C and D is either the design ΘC or ΘD, result of a renaming
function on addresses (called uni�cation function) Θ such that:

Θ(ξi) = ζi (or Θ(ζi) = ξi), 0 ≤ i ≤ n ∶

and for each sub-address ξi∗ of ξ (ζi∗ of ζ):

Θ(ξi∗) = Θ(ξi) ∗ (Θ(ζi∗) = Θ(ζi)∗).

The uni�cation function is no more than a substitution of one or more
addresses in the whole design, which preserves the polarity and rami�cations
of its actions. It obviously su�ces to perform it on one of the two designs,
renaming addresses of only one of the two bases.

5.1.1 Assignment on the interpretation

When we build the interpretation of a process P we assign to each location
l ∈ LocP an address [l]P . These addresses can be renamed at any time in the
construction of DP , but each location corresponds to a di�erent address, as
well as a channel name occurrence, thus we can explicit the information, and
consider the assignment to be, for example, [al]P = ξ.1.
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The assignments of two processes P and Q are enough to derive the
con�ict relation XP ∣ Q, and, of course, the set of synchronizations SP ∣ Q:
we do not need the structure the two processes, which is the partial order
on locations, i.e. the pre�x order on channels, but only the respective sets
of channel names occurrences. By combining these two sets, we can eas-
ily deduce the new synchronizations generated in the parallel composition.
Freedom requisites (de�nition 4.1.11), and hence the restriction designs (def-
inition 4.1.15), regarding these new synchronizations, come naturally from
the partial orders <P and <Q, which are preserved in the composition; in-
deed <P ∣ Q=<P ∪ <Q, since there are no new channels. Then, the freedom
requisites of a new synchronization will be the locations (possibly only one)
which are already a requisite for the locations labeling the channels, one of
P and one of Q, that form that new synchronization (the very preceeding
locations). The requisites for locations are explicited in R(P ) and R(Q)
(the set of restriction designs of, respectively, JP K and JQK), thus on their
respective interpretations, letting us recover the information we need.

Note that this is the tricky step of the result we want to prove: we need the
pre�x order <P of the processes in order to �nd the freedom requisites of the
new synchronizations arising in the parallel composition of P and Q. This
partial order can be indirectly deduced by looking at the restriction designs
R(P ) andR(Q), or, equivalently, by looking at the interaction paths between
BP ,BQ and their respective orthogonals: if a certain branch is consistently
visited after another, i.e. there is no interaction where it is visited before
the other, then we can conclude that the �rst branch has precedence on the
second, and �nd an order on the corresponding elements of the process P (or
Q), that is assigned to that branch. Obviously checking all the interaction
paths is a very long process, however we do not need the processes P and Q
to recover their structure, since it is indirectly coded inside interaction, via
the restriction designs.

While it might seem an equivalent operation, which means that we can't
get the information needed to represent the parallel composition P ∣ Q with-
out looking at P and Q directly, once the interpretations JP K and JQK are
built we can actually forget about P and Q, and just look at their interpre-
tations. The only downside of this operation is that we need the extra-ludical
information of the assignment functions [ ]P and [ ]Q attached to the
behaviours BP and BQ.

5.1.2 Renaming and rewriting

Base uni�cation is meant to be just a tool to simplify the merging of de-

signs (de�nition 2.2.29); we want to always be able to merge two base de-
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signs, since we can always compose two processes via parallel composition.
Intuitively, it is a rather natural operation, even if it does require a rewriting
of one of the designs involved; still, this rewriting does not a�ect the part of
the designs relevant for the correspondence and interpretation of a process,
which is its structure.

Remember that designs are abstraction of sequent calculus proofs (sub-
section 2.2.2), where addresses name places in the proof. Thus ξ1 means �the
place of the �rst premise generated by ξ�; the su�x 1 however only a�ects
our logical interpretation of the action (since it can be seen as the �rst sub
formula of the conclusion), not the interaction of the design. If, for example,
the �rst (negative) premise of a positive rule on ⊢ ξ is ξ3 ⊢, then we can see
that as a double ⊕ rule with the �rst ⊕ done on ξ3, thus hiding both ξ1 and
ξ2. However, what matters is its place in the designs with respect to the other
addresses, and the design structure: the cardinality of each rami�cation, the
number of rules, and occurrences of daimons.

In our case the actual address matters even less, since we base our in-
terpretation of the design and its interactions on the assignment function.
What we need thus is the cardinality of the rami�cation, one premise/sub-
design for each element we are coding, and that each sub-design has the
structure intended for the element to which it correspond. For instance, if
ξ3 = [(u, v)]P with (u, v) ∈ XP , what matters to us is that ξ3 is the address
assigned to the clause (u, v), and that the corresponding chronicle is of the
form (−, xoru & xorv,{{1},{2}})(+, xoru = ξ31,{1})⋯.

Regarding interaction, the structure of the orthogonals does not change
when performing a renaming, only the displayed addresses change; for exam-
ple if a design D is of base ⊢ ξ, then D[σ/ξ] if of base ⊢ σ. This substitution
changes all the pre�xes on the chronicles (the branches of a rule, de�nition
2.2.6) of the rami�cations of ⊢ ξ, but the design preserves its structure and
meaning, i.e. its interactions.

However, if this substitution is not performed on an address of the base,
but on the su�x numbers of its sub addresses, then it is indeed a rewriting of
the design. This is another necessary step to ensure the compatibility of two
designs for merging: the rami�cations of their respective �rst actions must be
disjoint. This means that we must change the elements in the rami�cation I
of the action justifying the sub-addresses in the premises, even though not its
cardinality. The renaming must still be coherent with the focus of the action
(it must still be a sub address), therefore we can see it as a renaming of the

elements of I. For instance if D =
⋮

ξ1 ⊢
⋮

ξ2 ⊢
⋮

ξ3 ⊢
(+, ξ, I = {1,2,3})

⊢ ξ
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Then D[σ/ξ] is
⋮

σ.1 ⊢
⋮

σ.2 ⊢
⋮

σ.3 ⊢ (+, σ, I = {1,2,3})⊢ σ

and D[J={4,5,6}/I] is
⋮

ξ4 ⊢
⋮

ξ5 ⊢
⋮

ξ6 ⊢
(+, ξ, J = {4,5,6})

⊢ ξ
In the �rst case we performed a substitution of the address in the base,

pre�x of the addresses generated by the �rst rule, in the second the rami�-
cation; however the relevant structure of the design has not changed.

With this intuition in mind, we can formally de�ne this operation on
designs and on the assignment attached to the interpretation of a process.
A renaming on the co-domain of an assignment [ ]P (the su�xes of the
rami�cation of the �rst rule of DP ) a�ects the corresponding base design as
a substitution of the rami�cation; then the operation of merging becomes
extremely natural: we can identify the bases of two (positive) designs by
uni�cation (say ⊢ ξ), substitute the rami�cation of one if needed, to make
the two disjoint, then put all the negative chronicles of the two designs
together as premises of a single positive rule introducing the base ξ.
The result is the union of the rami�cations, that are no more than (�nite in
our case) sets of natural numbers. In this way the operation ⊙ will always be
well de�ned on base designs, and thus by extension on the whole behaviours
BP and BQ, for two processes P and Q. Before formulating the de�nition,
by putting together the renaming and the merging, we give a short example
of what it looks like:

Example 5.1.2. Let C =
⋮

ξ1 ⊢
⋮

ξ3 ⊢
⊢ ξ

, D =
⋮

ζ1 ⊢
⋮

ζ2 ⊢
⋮

ζ3 ⊢
⊢ ζ

Let Θ be an uni�cation of the bases of C and D performed on D. We have

ΘD =
⋮

ξ1 ⊢
⋮

ξ2 ⊢
⋮

ξ3 ⊢
⊢ ξ

Then, to make C and Θ(D) compatible for merging, we need to rewrite
one of the rami�cations, to make them disjoint. Let I = {1,2,3} the ram-
i�cation of the �rst action of D, then a rewriting (of the rami�cation) of D is

D[J={4,5,6}/I] =
⋮

ξ4 ⊢
⋮

ξ5 ⊢
⋮

ξ6 ⊢
⊢ ξ
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This let us easily perform the merging of C and ΘD:

C⊙(ΘD) =
⋮

ξ1 ⊢
⋮

ξ3 ⊢
⋮

ξ4 ⊢
⋮

ξ5 ⊢
⋮

ξ6 ⊢
(+, ξ,{1, . . . ,6})

⊢ ξ
Remark 5.1.3. Recall that the ⊙ operation is performed on designs of two
disjoint behaviour of same base (with no superimposition of their directo-

ries, de�nition 2.2.24); the role of the renaming and uni�cation is to create
the right conditions for the operation to always succeed, without compromis-
ing the correspondence between a process and its interpretation.

Assignment renaming

Uni�cation of bases and substitution of the rami�cation of a design is an oper-
ation applicable to two generic design to make them compatible for merging.
Another route to achieve the same result, but speci�c to our interpretation,
is to work also on the assignment functions [ ]P and [ ]Q. A renaming of the
target addresses (the co-domain) of an assignment induces a corresponding
renaming on the addresses of the base design; for instance, it su�ces a simple
forward shift of the numbers of the rami�cation.

The renaming of an assignment [ ]Q with respect to another assignment[ ]P
is the following:

De�nition 5.1.4 (Assignment renaming). Let P , Q be MCCS processes,
DP and DQ have the same base, and let (+, ξ, I), (+, ξ, J) be their respective
�rst actions. The renaming of (DQ, [ ]Q) with respect to (DP , [ ]P ) consists
of the following steps:

1. A renaming of locations in the domain of [ ]Q such that LocP ∩LocQ =
∅. This is a necessary step when composing two processes P and Q in
parallel composition, since locations must be unique.

2. A substitution of the su�xes of addresses in the output of [ ]Q, denoted
Output([ ]Q), such that [ ]P ∩[ ]Q = ∅, i.e. the addresses assigned to
elements of Q may be changed in order to avoid con�icts � no address
must be in common between the outputs of [ ]P and [ ]Q � while
keeping the same pre�x ξ.

3. The rami�cation (of the �rst action) of DQ must be rewritten, in order
to be coherent with the assignment [ ]Q. So the new rami�cation J∗

must be such that Output([ ]Q) = J∗, and I ∩ J∗ = ∅.

A renamed pair (DQ, [ ]Q) is denoted (D∗Q, [ ]∗Q).
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Remark 5.1.5. The simple reason why renaming is performed on one pair,
with respect to another, is because it su�ces to act on only one assignment
function in order to make the two designs compatible; therefore it is equivalent
to perform the renaming on one pair or the other.

The requisites that two (positive) designs D and C need to satisfy in order
to be compatible for merging are:

� D and C must have the same base.

� Let (+, ξ, I) be the �rst rule of D and (+, ξ, J) be the �rst rule of C,
then I ∩ J = ∅.
Note that our condition of compatibility is a particular case of alien-
ation. Recall that two behaviours of the same base are alienated (def-
inition 2.2.26) if the reunion of the rami�cation of the �rst action of
their designs are disjoint ; however in the case of a connected positive
behaviour (de�nition 2.2.21), this is no di�erent than having disjoint
directories.

When merging the interpretation of two processes P and Q we can dis-
tinguish two cases:

1) AP ∩AQ = ∅ (the set of channel names are disjoint); the two processes
have no common channel name, and thus no new synchronization arises
from the parallel composition P ∣ Q.

2) The intersection is not empty, and new synchronizations are generated.

The di�culty here is obviously case 2), which forces us to add new ele-
ments not already present in DP and DQ. However, viamerging of designs,
in the �rst case we can de�ne an operation working exactly as the ⊗ on be-
haviours, and add some more extra-ludical steps in the second case to account
for the new elements, while keeping the ⊙ operation on base designs intact.

Let us �rst look at P ∣ Q, and what are the consequences of the parallel
composition:

� <P and <Q, the two respective partial orders on locations, are preserved,
since no new location is added (assuming the renaming on locations of
P or Q to preserve their uniqueness), so <P ∣ Q=<P ∪ <Q and LocP ∣ Q =
LocP ∪LocQ.

� There may be new synchronizations between channels of P and chan-
nels of Q, preserving all their previous ones. So SP ∪SQ ⊆ SP ∣ Q as well
as XP ∪ XQ ⊆ XP ∣ Q.
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� The new synchronizations extend the freedom requisites of their loca-
tions � since there are more ways to delete them through execution.
The freedom requisites of these new synchronizations, instead, are al-
ways already existing locations � we can determine which they are by
looking at <P and <Q locally, thus at the restriction designs R(P ) and
R(Q) or, as we already noted, at the interaction paths in BP and BQ.

The new objects that need to appear in the merging can be captured by
the sets:

newSP ∣ Q = SP ∣ Q ∖ SP ∪ SQ

newXP ∣ Q = XP ∣ Q ∖ XP ∪ XQ.

We have that newSP ∣ Q is the set of synchronizations i, j, . . . that are
generated in the parallel composition; so the pairs (al, am) such that, w.l.o.g.,
a ∈ P and a ∈ Q. newXP ∣ Q by de�nition is the set containing only the new
xor clauses: pairs of synchronizations (u, v) with a common location, such
that u or v belongs to newSP ∣ Q (therefore the clause was not in XP or XQ).

While the de�nitions holds, we want a way to recover these sets without
looking at (the structure of) P ∣ Q. We already pointed at the solution,
that is to just look at the domain of the assignments [ ]P and [ ]Q (which
includes each channel name occurrence, via their locations, of P and Q): to
recover newSP ∣ Q, it su�ce to take each pair (al, am) such that. w.l.o.g.,
al ∈ Domain([ ]P ) and am ∈ Domain([ ]Q), as showed in the next two
lemmas (for brevity we will use Dom([ ]P ) to denote the domain of an
assignment function).

Lemma 5.1.6. Let P,Q be MCCS processes. It holds that

newSP ∣ Q = SP ∣ Q ∖SP ∪SQ = {(al, am) ∣ al ∈Dom([ ]P ), al ∈Dom([ ]Q)}.

where Dom([ ]P ) is the domain of the assignment function [ ]P and
Dom([ ]Q) is the domain of the assignment function [ ]Q.

We skip the trivial proof, by de�nition of newSP ∣ Q, [ ]P and [ ]Q.
The set newXP ∣ Q instead includes all the pair of synchronizations (u, v)

where u and v share a channel name occurrence, and such that either u or v
are in newSP ∣ Q:

Lemma 5.1.7. Let P,Q be MCCS processes. It holds that

newXP ∣ Q = XP ∣ Q ∖ XP ∪ XQ =

= {(u, v) ∣ u ∈ newSP ∣ Q ∨ v ∈ newSP ∣ Q ∧ u, v ∈ SP ∪ SQ ∪ newSP ∣ Q}.
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Again, a trivial proof by de�nition of newXP ∣ Q and by the previous
lemma 5.1.6.

Therefore, if we have [ ]P and [ ]Q we can always assume to have
newSP ∣ Q and newXP ∣ Q, which can be build by a local assignment check
(the full structure of the two processes remains unknown, despite being re-
coverable).

We have de�ned the renaming on a speci�c pair (DP , [ ]P ) with respect to
another pair (DQ, [ ]Q); however, with no need to internalize this operation
in the operation that will be the merging of interpretations, we can de�ne it
for two designs satisfying the requisites of compatibility, and then for their
possible assignments.

As a last ingredient, we need to de�ne a design containing the elements
of newSP ∣ Q and newXP ∣ Q, which will be a third member of a merging of
designs including the base designs of two processes P andQ, in the non-trivial
case where these sets are not empty.

De�nition 5.1.8. Given two MCCS process P and Q, let (+, ξ, I) and
(+, ξ, J) be the �rst action of respectively DP and DQ, then NP ∣ Q is the
following design:

G[k1] ⋯ G[kn] w[x1, y1] ⋯ w[xn, yn] (+, ξ,N)
⊢ ξ

where {k1, . . . , kn} = newSP ∣ Q, {(x1, y1), . . . , (xn, yn)} = newXP ∣ Q and N ∩
I = N ∩ J = ∅.

We directly explicit the elements assigned to addresses of the rami�cation
of NP ∣ Q, since the actual su�xes are not important for its construction.
With [ ]N we note the assignment of newSP ∣ Q and newXP ∣ Q to their
corresponding addresses introduced by the rami�cation N .

Note that NP ∣ Q is compatible with DP and DQ by construction.

5.1.3 Merging of interpretations

As a general case, we may start with the de�nition of merging of base designs,
which is the �rst step to de�ne the more general merging of interpretations.
We have:

De�nition 5.1.9. Let P,Q beMCCS processes, and DP ,DQ their respective
base designs. Then the merging of DP and DQ is

DP ⊙D∗Q ⊙NP ∣ Q



119

where D∗Q is the renaming of (DQ, [ ]Q) with respect to (DP , [ ]P ) (def-
inition 5.1.4).

The assignment associated to the merging is

[ ]P⊙Q = [ ]P ∪[ ]Q∗ ∪[ ]N (the union is already disjoint by construc-
tion).

We note DP ⊙D∗Q ⊙NP ∣ Q with DP ⊙DQ.

As an immediate lemma we have

Lemma 5.1.10. Let P,Q be MCCS processes. Then DP ⊙DQ = DP ∣ Q.

Proof. Since we put together the branches of DD and DQ, that appear in
DP ∣ Q, it su�ces to show that NP ∣ Q has the rami�cations corresponding to
the elements of P ∣ Q missing from either P or Q, i.e. the new synchroniza-
tions and their xor conditions. Trivially, it holds by construction of NP ∣ Q,
and de�nition of newSP ∣ Q and newXP ∣ Q.

In the limit case where NP ∣ Q = ∅, which means that there are no new
synchronizations, or simply no communication, between P and Q, the merg-
ing can be de�ned as just the standard operation ⊗, de�ned on alienated
behaviours of same base. Recall that the operation is de�ned thus:

B⊗C = {D ⊙ C ∣ D ∈ B,C ∈ C }��

Remark 5.1.11. If we look at the case R(P ) ⊙ R(Q) we may think that
the merging of two restriction designs nulli�es the role and meaning of the
restriction itself, introducing 6 and prunings p where they are not supposed
to be. However these merging are actually irrelevant if we look at the �nal
result. That is because the merged designs R(P ) ⊙ DQ on one hand, and
DP ⊙R(Q) on the other, actually take over R(P )⊙R(Q): the requisite they
force on interaction will still hold in the �nal behaviour, since the requisite
expressed by R(Q) and R(P ) are una�ected by the merging with the base
design of the respective other process (DP and DQ). The designs resulting in
the merging R(P )⊙R(Q) do not generate con�ict, they are just meaningless
restriction designs, which would appear anyway in the bi-orthogonal closure
of the set of generators BP ∣ Q.

Therefore, we can give a simple de�nition for the case were there is no
communication between P and Q, and a more elaborated one for the second
one, where there are new synchronizable pairs. The �nal step is thus to ex-
tend the de�nition of merging to JP K and JQK, and prove that the merging
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of interpretations, which will be denoted JP K � JQK, is equal to JP ∣ QK.

We need to restrict the operation ⊙ on the base designs DP and DQ,
together with NP ∣ Q, re-build the restriction designs on the merged base
design DP ⊙DQ, following the freedom requisites for the new elements, and
only then perform the closure by bi-orthogonality. In this sense, the full
merging of interpretations (in the second case) is related to the operation ⊗
on behaviours, since it keeps the core operation ⊙, but goes outside its logical
meaning by adding a third member on the merging of base designs, and by
reaching the results through a few steps that repeat the construction of the
interpretation. This is indeed close to building the interpretation of P ∣ Q
from scratch, but our requirement to avoid directly looking at P and Q has
been ful�lled, since we are only using the information found in JP K and JQK
� that actually let us recover the necessary pre�x order of P and Q.

To prove the equality (modulo renaming, thus rather an equivalence)
of the behaviours BP and BQ interpreting two processes P and Q, we can
prove either that their set of generators is the same, or that the bi-orthogonal
closure yields the same set; i.e. the interaction paths are the same for both
sets. However, since the set of restriction designs is entirely dependent on
the base design and freedom requisites, from which restriction designs are
univocally generated, it is much more direct to show the �rst equivalence.

Note that by construction BP ∣ Q preserves all the interactions of BP and
BQ whose associated executions are an execution sequence of P orQ: it holds
that B�

P∪B�
Q ⊆ (BP ∣ Q)�, since all the restriction designs are preserved, even

if built on a larger base design. This holds because restrictions are based on
freedom requisites that are entirely determined by the partial orders <P and
<Q, which are not a�ected by the parallel composition.

Sets of generators and assignments merging

Let P,Q be MCCS processes, and DP ⊙DQ be the merging of their base
designs and assignments. We can distinguish two cases as said above.

Let AP be the multi -set of occurrences of channel names in the domain
of [ ]P (thus each occurrence of the same channel name is counted as a
separate element), and AP ⇂ε the restriction of the set to elements of polarity
ε ∈ {+,−}. Then, either

1. AP ⇂+ ∩AQ ⇂−= ∅ and AP ⇂− ∩AQ ⇂+= ∅, i.e. [ ]P and [ ]Q do not have
any common occurrence of the same channel name, and of opposite
polarity, or

2. AP ⇂+ ∩AQ ⇂−= {al, . . . , am, an, . . . , ao} or
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AP ⇂− ∩AQ ⇂+= {al, . . . , am, . . . , an, . . . , ao}.
With these de�nitions we are able to identify which of the shared chan-
nel names (of opposite polarity) are in [ ]P and which are in [ ]Q by
their polarity.

We have that

De�nition 5.1.12. Let P,Q be MCCS processes and case 1 above hold.
Assume BP and BQ are built as alienated behaviours with the same base,
then

JP K � JQK = (BP⊗BQ, [ ]P ∪ [ ]Q).

Lemma 5.1.13. Let P,Q be MCCS processes and case 1 above hold. Then,

JP ∣ QK = JP K � JQK

Proof. Since no communications arises in the parallel composition P ∣ Q, it
holds that:

� newSP ∣ Q = ∅ = newXP ∣ Q, LocP ∣ Q = LocP ∪LocQ; therefore

[ ]P ∣ Q = [ ]P ∪ [ ]Q,

modulo renaming of addresses to avoid superimposition.

� R(P ∣ Q) = (R(P )⊙DQ) ∪ (R(Q)⊙DP ), i.e. the union of the merging
of each design in R(P ) and the base design DQ, with the merging of
each design in R(Q) with the base design DP .
Therefore:

R(P ∣ Q) ⊂ {D ⊙ C ∣ D ∈ BP ,C ∈ BQ}�� = BP⊗BQ

We can thus conclude that

JP ∣ QK = JP K � JQK = (BP⊗BQ, [ ]P ∪ [ ]Q).

by de�nition 5.1.12 of JP K � JQK in case 1.

In this way we found a simple de�nition for �, that interprets the parallel
composition in the trivial case. However, in case 2 things are much more
complicated, since we need to modify existing restrictions, and add new ones.
Our aim is to prove the equivalence between JP K � JQK and JP ∣ QK, where
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� will be extended and modi�ed to a more general and complex operation.
We need to go through a few more steps for case 2, and partially repeat the
construction of the interpretation. The de�nition of � for case 2 will still hold
for case 1, but as a drawback entails some direct modi�cations of the sets
of generators based on the information we can recover from the assignment
functions.

The most direct way to prove the equivalence is therefore via the sets
of generators themselves. We already proved the base designs equality in
lemma 5.1.10; what we are missing is the equality of the restriction designs
of JP ∣ QK and JP K � JQK, derived from the set of freedom requisites. What
we need are the new restriction designs, that is the restriction designs for
the new elements newSP ∣ Q, newXP ∣ Q, and modify the old restrictions for
locations that appear in new synchronizations u, v ∈ newSP ∣ Q.

De�nition 5.1.14 (New restriction designs). Let P,Q be MCCS processes.
We know that <P ∣ Q=<P ∪ <Q, therefore F (i), F ((u, v)) (the freedom con-
ditions) are unchanged for synchronizations i ∈ SP ∪SQ, and (u, v) ∈ XP ∪XQ.

Instead F (l) for l ∈ LocP ∪LocQ may be extended with any i ∈ newSP ∣ Q
such that l ∈ i. We can then build R(P ) and R(Q) in the same way as
before (de�nition 4.1.15) � by putting 6 and prunings accordingly to freedom
requisites and xor conditions � on the extended base design DP ⊙DQ.

The resulting sets of restriction designs are denoted R(P )DP ⊙DQ
and

R(Q)DP ⊙DQ
.

The restrictions for newXP ∣ Q are immediately recoverable from the set
newSP ∣ Q: all we need to know are which new synchronizations are in con-
�ict. Instead restriction designs R(j) for j ∈ newSP ∣ Q require us to check
the local partial orders on locations coded into JP K and JQK. If j = (al, am),
we must recover the immediate predecessors of l and m, i.e. the greatest
locations h, k such that h < l and k <m.

Since we coded the local partial order on locations in the restriction de-
signs, it is enough to check R(l) and R(m): if there is a design with a 6 as
last rule of G[h], for some location h, and a pruning over [l] ⊢ (and equiva-
lently for m, for some location k), then we have that h, k ∈ F (j) � remember
that one of the freedom requisites of a location is its immediate predecessor.
Equivalently we can check all the possible interaction paths of JP K and JQK
to recover the partial orders. Therefore we can build R(j) based on F (j)
(we skip the trivial proof of the fact that F (j) is the same set if build on
(P ∣ Q,<P ∣ Q)).

These new sets of restriction designs are denoted respectively R(newSP ∣ Q)
and R(newXP ∣ Q).
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Lemma 5.1.15. Let P,Q be MCCS processes. It holds that R(P ∣ Q) =
R(P )DP ⊙DQ

∪R(Q)DP ⊙DQ
∪R(newSP ∣ Q) ∪R(newXP ∣ Q).

Proof. We proved the equality of the base designs DP ∣ Q and DP ⊙DQ
(lemma 5.1.10 ), thus the restriction designs of the interpretation of P ∣ Q
and the ones on the merged base design DP ⊙DQ are modi�ed copies of the
same design.

Now, these modi�cations must be the same, since they are based on
the same freedom requisites. Indeed, the ones for P and Q remain un-
changed, and their respective restriction designs are, by de�nition, exactly
R(P )DP ⊙DQ

and R(Q)DP ⊙DQ
.

The other restrictions in R(P ∣ Q) are the ones about newSP ∣ Q and
newXP ∣ Q, which are exactly the ones included in the union above, i.e.
R(newSP ∣ Q) and R(newXP ∣ Q), that are de�ned in the same way as stan-
dard restriction designs for synchronizations and xor clauses in the construc-
tion of the interpretation (de�nition 4.1.15), but take the needed information
from the interpretations JP K and JQK instead that from the processes P and
Q.

De�nition 5.1.16. Let P,Q be MCCS processes, and case 2 above hold
(there is communication between P and Q). Then JP K � JQK =

(DP⊙DQ ∪R(P )DP ⊙DQ
∪R(Q)DP ⊙DQ

∪R(newXP ∣ Q) ∪R(newSP ∣ Q))��

Let us note its set of generators with BP �BQ, then

De�nition 5.1.17. Let P,Q be MCCS processes, and case 2 above hold
5.1.2 (there are possible communications between P and Q). The merging

of interpretations of P and Q, in symbols JP K � JQK, is the pair

((BP �BQ)��, [ ]P ⊙Q).

We want to prove the following:

Theorem 5.1.18. Let P,Q be MCCS processes. Then JP K�JQK = JP ∣ QK.

Proof. It su�ces to prove that BP �BQ ≡ BP ∣ Q. We already proved that:

� the base designs of the merging of interpretations, and of the interpre-
tation of P ∣ Q are the same, in lemma 5.1.10;

� also the restriction designs are the same, by lemma 5.1.15.
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Therefore we only need to prove that an uni�cation of the assignments is
possible, i.e. that, via a renaming on the assignments, [ ]P ⊙Q = [ ]P ∣ Q. We
use the symbol for equivalence, since it holds modulo a renaming of addresses.

The theorem is almost straightforward by construction of BP � BQ and
BP ∣ Q. What we need to check is that we can indeed make the assignments
equal by a renaming (which implies a rewriting of their corresponding base
design). This is possible as long as:

1. The domain of the assignments is the same.

2. The co-domains have the same cardinality and structure (number of
rules), which are the rami�cations of DP ⊙DQ and DP ∣ Q.

These two points hold by construction, since

1. the domain of [ ]P ∣ Q is:

� LocP ∣ Q = LocP ∪LocQ.
� SP ∣ Q = SP ∪ SQ ∪ newSP ∣ Q.
� XP ∣ Q = XP ∪ XQ ∪ newXP ∣ Q.

Which, by construction, is the domain of [ ]P ⊙Q.

2. By lemma 5.1.10, DP ⊙DQ = DP ∣ Q

Therefore we can assume [ ]P ∣ Q = [ ]P ⊙Q via a simple renaming, i.e. the
domain and co-domain of the functions are the same; hence at the same
element of the common domain can be associated the same address in the
co-domain (the rami�cation of the respective base design). We can now
conclude that

BP �BQ ≡ BP ∣ Q

Remark 5.1.19. The merging of interpretations, with the complications of
the second case � where there is communication between the two processes
� is explicative regarding the dynamic of parallel composition. While in the
�rst case, when there is no interaction between P ad Q, it is nothing more
than a ⊗ on behaviours, when something new is generated it requires some
machinery and modi�cations, which make it go beyond a purely logical oper-
ation.

It can be seen, though, as a good representation of what a parallel com-
position actually entails, and what are the minimal information that we need
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to make it work. That is the local order <P , all the possible combinations of
synchronizable pairs, and the con�ict relation between them. All of them add
complexity to the process, enough to go beyond the grasp of a simple ⊗.

While no syntactic element is added in the parallel composition P ∣ Q, in
JP ∣ QK we have something more to account for, with respect to the behaviour
of the composed term; the merging of interpretations tries to tell us what that
is.
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5.2 A reduction on the interpretation

The question we are going to study in this second part is what happens to
the interpretation when we consider a process after an execution step. So, if
P →u P ′, what changes between JP K and JP ′K? In other words, what happens
to the interpretation JP ′K with respect to JP K?

In general, when dealing with typing systems, types are preserved by re-
duction/normalization, i.e. if P → P ′, then type(P ) = type(P ′); this property
is called subject reduction, and, as we pointed out in the discussions about
the meaning of processes, it should not hold in our case. As Be�ara writes
in the introduction of [9], the meaning of an execution is not its �nal result,
but what happens to get there, and thus the meaning of a process should
not be preserved after execution, since the intermediate steps and forms of
the process during execution cannot be recovered anymore. Our aim was to
characterize the dynamic of a process, taking into account its non determin-
istic and non con�uent behaviour, hence also any change in the process that
in�uences the possible execution paths, and its potential interactions with
the environment, which necessarily change after execution. This means that,
if we achieved the intended result with our interpretation, then the interpre-
tation is not supposed to be preserved after execution; therefore, a standard
subject reduction property should not hold.

There actually is a sort of strong inclusion of JP ′K in JP K, that we can
momentarily note with JP ′K ⊏ JP K. This is not a standard inclusion ⊂, as
could be the sub-design property: sub designs are the sub-sets of branches
(or chronicles) whose base is a premise of an action of the main design �
for example all the G[u],G[l], etc. are sub designs of DP � however, if we
take DP ∖G[u] we would not have a sub-design inclusion; indeed this kind
of operation would be a deeper pruning, up to the rami�cation of the base
of DP . The pruning consists in erasing all actions in the continuation of a
element of the rami�cation, but not the element itself from the rami�cation:
the base of the sub-design � a premise of the �rst action of DP � is still there;
therefore there is no need to rewrite the �rst action of the design. Instead,
by completely removing the whole branch G[u], we would need to rewrite
the rami�cation of the �rst action (+, ξ, I) of DP , i.e. the directory of the
behaviour, since it is connected (fact already explained in de�nition 2.2.24).
On connected behaviours, this operation is called projection1. Note that
we have already de�ned a similar operation in the merging of designs, that
is the renaming on [ ]P which induces a rewriting on the rami�cation I of
the �rst action of the base design, in order to have disjoint directories for

1Found in the seminal article [38].
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the merging. In this case, instead, we would be erasing a particular number
from I, that would become I ′ = I ∖ {n} where [u] = ξn.

Theorem 4.2.14 on the correspondence between execution and interaction
is the technical reason that explains why the interpretation is not preserved
� which, again, was our intended result. JP K characterizes all executions on
P , thus we know that any execution P ′ →u, for any P ′ such that P →u P ′

for some u ∈ SP , is already associated to interactions on JP K. However, it
is clear enough that JP ′K cannot and should not include all executions →u,v⃗

from P ; in particular, not the execution P →u P ′. The synchronization u,
as well as the synchronizations having a common channel with u � its xor
conditions � should not appear at all in JP ′K. Therefore JP ′K cannot be equal
to JP K, however JP K is able to characterize all the executions of JP ′K, or at
least include them as sub-executions, and this is where the inclusion lies. The
next step is to formally de�ne an operation that lets us obtain JP ′K, for any
reduced form P ′ of P , once applied on JP K and a synchronization u ∈ SP .
Since the operation removes a part of JP K, is an actual reduction on the
interpretation.

Remark 5.2.1. We can immediately note that if P →u P ′, then SP ′ =
SP ∖({u}∪xor(u)) (with xor(u) as in de�nition 3.2.8)2, and LocP ′ = LocP ∖
{l,m}, with u = (al, am). This means that the whole branches G[u],G[l],G[m]
and G[x], for all x ∈ xor(u), are not in DP ′, as well as w[u,x] and w[x, y]
(the xor conditions for u). Still, except for the channels in the synchroniza-
tion u, the rest of the process is preserved, as well as its possible executions;
reduction is thus a strict erasing, as in GP , always resulting in a smaller struc-
ture (of course this is true only for processes without replication). Therefore
we want to deep prune � or trim to avoid misinterpretation � DP and obtain
a strictly smaller base designs, along with less non commutative restrictions.

We can de�ne the operation on DP , which then will naturally apply to
R(P ).

De�nition 5.2.2 (Trimming). Let P be a MCCS process, (al, am) = u ∈ SP
and (+, ξ, I) the �rst action of DP . The trimming of u on DP , noted (DP )u,
is a rewriting of DP consisting in the removing of the branches associated to
a synchronization u, which are:

� G[u];

� G[l] and G[m];
2xor(u) = {x ∣ (u,x) ∈ XP }
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� xoru & xorx1 , . . . , xoru & xorxj and G[x1], . . . ,G[xj] for all clause
(u,x1), . . . , (u,xj) ∈ XP ;

� xorx & xory for each x ∈ xor(u) and y ∈ xor(x);

and then a rewriting of (+, ξ, I) accordingly to this removal, i.e. a restric-
tion to the action (+, ξ, J) with J = I ∖ {i1, . . . , in}, where [u] = ξi1, [l] = ξi2,
[m] = ξi3, G[x1] = ξi4, . . ., [xoru & xorxj] = ξim, . . ., [xorx & xory] = ξin.

This operation on the base design induces a rewriting on all designs of
R(P ), and a restriction on the assignment [ ]P , since its co-domain itself
get restricted, that is the directory of BP . For the latter it is a matter of a
simple set inclusion, since [ ]P ′ = [ ]P except for the elements [u], [l], [m],
[x], [xoru & xorx] and [xorx & xory], for each x ∈ xor(u) and y ∈ xor(x)
which are removed from the domain of [ ]P (since all x ∈ xor(u) disappear
once u has been erased, even all theirs xor conditions must as well).

To better understand the trimming, we give a simple concrete example
in the following page.
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As we mentioned, this operation of removal of a sub-rami�cation from de-
signs of a behaviour in ludics terms is a simple projection operation, de�ned
on connected behaviours. We could as well de�ne the trimming as an opera-
tion on BP , the set of generators of the behaviour BP , since the projection
operation commutes with the bi-orthogonal closure (shown in [38]). Thus,
if (BP )u denotes the trimmed set of generators, where for each design, the
rami�cation I of the �rst action (+, ξ, I) is projected to J = I ∖ {i1, . . . , in},
then (BP )��u = ((BP )��)u.

In the following, let x, y be variables on the set SP (i.e. any synchroniza-
tion satisfying the conditions on x or y).

De�nition 5.2.4. Let P be a MCCS process, and (al, am) = u ∈ SP . Then
([ ]P )u is [ ]P ⇂(DP )u, i.e. is [ ]P on the restricted domain (LocP ∖{l,m})∪
(SP ∖ ({u}∪{x ∣ ∈ xor(u)})∪(XP ∖{(u,x)∪(x, y)}) for each x ∈ xor(u) and
y ∈ xor(x).

It is clear that by this de�nition ([ ]P )u matches the rami�cations of
(DP )u, and has the same domain of [ ]P ′ , with P →u P ′ � for the consider-
ations made in remark 5.2.1. Therefore, via a renaming of the assignments
as for the merging of types, we can conclude

Lemma 5.2.5. Let P be a MCCS process. If P →u P ′, then, let ([ ]P )u
be the resulting assignment on the trimmed base design (DP )u; it holds that
([ ]P )u = [ ]P ′.

Proof. We already noted that the domains of the two assignments are the
same, since SP ′ ,XP ′ and LocP ′ matches exactly the de�ned restrictions on the
respective sets of P for ([ ]P )u. The co-domain, which is the rami�cation
of the �rst action of DP ′ for [ ]P ′ and the one of (DP )u for ([ ]P )u, have
the same cardinality, being built on the same domain of their respective
assignments. Thus we can unify the two rami�cations, say I for DP ′ and J
for (DP )u, by a renaming of the latter (we could as well rename I, but in
this way we con�ne the operations on the trimmed base design), and obtain
the equality

([ ]P )u = [ ]P ′ .

Since the directories of DP ′ and (DP )u are the same, as well as their
structure � all the G[l], G[u] and w[x, v] are the same since are built on the
same domain � and their base can be assumed to be the same (it is a single
address), as an immediate corollary we have
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Corollary 5.2.6. If P →u P ′, then DP ′ = (DP )u.
About the restriction designs, it holds that the trimming of a synchro-

nization u on the base design will automatically remove from the interpre-
tation the restriction designs regarding the branches associated to u. That
is because the restrictions in question do not have anymore their meaningful
branches (the ones ending with 6 or pruned), thus are equal to the base de-
sign; therefore they will simply disappear in the union with {DP} since they
become the very same element. We can identify these relevant restrictions in
the following way:

De�nition 5.2.7. Let P be a MCCS process, and (al, am) = u ∈ SP .
Let R([u]) be the set of restrictions designs of JP K where G[u] or G[x],

for x ∈ xor(u), are pruned along with those where G[u],G[l], G[m] end
with 6, and those where [xoru & xorx], or [xorx & xory], for all x ∈ xor(u),
y ∈ xor(x) have a branch ending with 6.

The de�nition selects all restriction designs where u or its locations are
a requisite (ends with 6) for some other element of P , and the restrictions
on all xor conditions regarding u and x ∈ xor(u) � note that in this way
R(l) and R(m) are included, since G[u] is a requisite for its own locations,
ending with 6. What happens is that all such synchronizations x disappear
along u, because one of their channels, the one in common with u, has been
erased. However the other channel is still in the process, thus the restriction
design where G[x] ended with 6 (the restriction on the other channel labeled
by a location), is still relevant to interaction. Indeed the restriction for the
other location of such x will just be missing the branch G[x], but have 6 on
G[j] for any other synchronization j to which it belongs, or just end with a
pruning if no such j exists, noting an absence of interaction; thus only the
restriction design where G[x] is pruned are going to disappear.

Example 5.2.8. Let P be a MCCS process, u,x ∈ SP and (u,x) ∈ XP .
Then, let u = (bl, bm) x = (bl, bo), and y = (bn, bo); bo is a common channel
between x and y, therefore (x, y) ∈ XP . If we erase from DP the branches
associated to u, the entire chronicle starting with xorx &xory is erased from
all designs of BP , and the restriction design for b

o
, R(bo), from

. . .

⊢ [x].1 6

[x] ⊢ . . .

⊢ [y].1 6

[y] ⊢ . . . [bo] ⊢
p

. . .

⊢ ξ

becomes
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. . .

⊢ [y].1 6

[y] ⊢ . . . [bo] ⊢
p

. . .

⊢ ξ

Note also that we do not require u to be a principal synchronization, since
we want the de�nition to be as general as possible, letting us perform the
trimming on the interpretation even for non principal synchronizations. Still,
in most cases the restrictions where G[u] is pruned are not relevant, since
our aim is to match execution on the process, and thus we are assuming to be
in the case where u is ready for execution, i.e. its channels are not blocked
by any pre�x, and therefore there are no restrictions where G[u] is pruned.

The rewriting of R(P ) (the set of all restriction designs) on the trimmed
base design, that is R(P ) ⇂(DP )u= (R(P ))u, does not change the relative
positions of 6 and the pruning, except in the case of the erased branches,
where obviously they do not appear at all. We can note the behaviour built
on the trimmed base design with:

(BP )u = ({(DP )u} ∪ (R(P ))u)��

As a last step, we need the following two lemmas:

Lemma 5.2.9. Let P be aMCCS process, and u ∈ SP . All designs of R([u])
disappear in the union {(DP )u} ∪ (R(P ))u.

Proof. By rewriting R(P ) on (DP )u all the branches associated to u are
erased. These are exactly � by de�nition � the branches ending with 6 or
a pruning of designs of R([u]) which therefore do not have these relevant
branches anymore, becoming exactly equal to (DP )u, the only design remain-
ing in the union.

Lemma 5.2.10. Let P be a MCCS process, u ∈ SP , and P →u P ′. Then
R(P ′) = (R(P ))u ∖R([u]).

Proof. All designs of R([u]) are exactly the ones about the branches missing
from DP ′ with respect to DP , i.e. the branches corresponding the elements
associated to u in P . The other elements of (R(P ))u are then exactly the
same designs of R(P ′), since <P ′ and XP ′ , on which restriction designs are
based, are exactly <P and XP on a restricted domain, i.e. <P ′ ∩ <P=<P ′ and
XP ′ ∩ XP = XP ′ . Therefore R(P ′) = (R(P ))u ∖R([u]).
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We have now all the tools needed to de�ne reduction on JP K.

De�nition 5.2.11. Let P be a MCCS process, JP K its interpretation, and
u ∈ SP . The reduction of u on JP K is (JP K)u = ((BP )u, ([ ]P )u). We note
this operation with JP K↝u (JP K)u.

Note that if u is an internal synchronization the result of the operation
is the interpretation of a process that may be not obtainable by execution
on P . We let the operation apply to a general case, since this could help us
characterize deadlocks by performing it on non-executable synchronizations.

The reason we call this operation reduction instead of rewriting, other
than the fact that we are erasing parts of the base design, is clear if we look
at the interaction paths. Indeed, once proved that (JP K)u = JP ′K, for P →u P ′,
it is immediate to show that the reduced interpretation contains a subset of
the interaction paths of JP K, by the correspondence execution-interaction.
On P ′ we can perform →vi with vi = vj or v0, such that:

1. vj does not have a common location with u, and is a principal synchro-
nization.

2. v0 has as only requisite the synchronization u (one or both its locations),
i.e. P →u,v0 is an admissible execution.

Therefore, by theorem 4.2.14, for all interactions on JP ′K we have that,
modulo renaming of the assignments, there is an interaction on JP K such
that either they have the same associated execution, or the interaction on
JP K extends � with an initial segment � the one on JP ′K.

However we cannot talk about equality of the sets of visited actions,
because the set of orthogonals B�

P and B�
P ′ cannot be equal, due to the

mismatch of the directories of DP and DP ′ . Indeed the �rst action of DP
have a smaller cardinality than the one of DP ′ , since P ′ lacks all the branches
associated to u, and so [ ]P ′ have a strictly smaller domain than [ ]P ; however
we can still assume that the same addresses are assigned to the same elements
of the domains. It remains to prove that (BP )u is actually the interpretation
of the process after execution on u.

Theorem 5.2.12. Let P be aMCCS process, u = (al, am) ∈ SP and P →u P ′.
It holds that JP ′K = (JP K)u, therefore

P →u P ′

JP K↝u (JP K)u

J−K J−K
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Proof. By applying lemma 5.2.5, corollary 5.2.6, and lemma 5.2.9 to enable
lemma 5.2.10, we have that DP ′ = (DP )u, [ ]P ′ = ([ ]P )u, and that R(P ′) =
(R(P ))u. Therefore we can conclude:

JP ′K = (JP K)u.

For the above discussion about the inclusion of interaction paths, we can
give the following result:

Lemma 5.2.13. Let P →u P ′. It holds that ∀C′ ∈ BP ′ ,∃C ∈ BP such that
either:

� ⟨ ← C′⟩ ≊ ⟨ ← C⟩ where ≊ means that (⟨ ← C′⟩ ∖ (+, ξ, J)) = (⟨ ←
C⟩∖(+, ξ, I)) and J ⊂ I, with (+, ξ, J) the �rst action of DP ′ and (+, ξ, I)
the �rst action of DP .
This is the case where we perform interaction on [vi], [v⃗] with vi as in
case 1 above, independent from u; or

� ⟨ ← C′⟩ ⊏ ⟨ ← C⟩ where ⊏ means that (⟨ ← C′⟩ ∖ (+, ξ, J)) = (⟨ ←
C⟩ ∖ ((+, ξ, I), [u]��) and J ⊂ I; with (+, ξ, J) the �rst action of DP ′,
(+, ξ, I) the �rst action of DP and [u]� the sequence of action de�ned
in the constructive proof of lemma 4.2.19, i.e. the sequence of action
that visits the addresses of xor(u), G[u], and G[l], G[m], for its lo-
cations l,m. This is a generalization of the notion of �nal segment �
it is not necessarily a �nal segment since all the interaction steps not
corresponding to execution may be done in a very di�erent order.

In this case we are performing interaction on [v0], [v⃗], with v0 as in
case 2 above, dependent from u.

Proof. By applying theorem 4.2.14 on the correspondence execution-interaction
we can conclude that the interaction paths on BP ′ are in one of the relations
≊ or ⊏ with the ones of BP , and thus have either the same associated execu-
tions or the ones of BP ′ are (generalized) �nal segments of those of BP .

From lemma 5.2.13, it follows that JP K includes the interactions of JP ′K,
in the meaning expressed by the two relations ≊ and ⊏ de�ned in the lemma.
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5.2.1 Reduction to 1

The de�nition of reduction on the interpretation can naturally be extended to
sequences of synchronizations u⃗ = u1, . . . , un as a simple repetition of the op-
eration: for example (DP )u1,u2 = ((DP )u1)u2 and so on, the same for ([ ]P )u⃗
and (BP )u⃗, for execution sequences →u⃗.

What is left to inquire is what is the form of the interpretation when a
process P is reduced to 1. If P →u⃗ 1, then what happens to the structure of
(BP )u⃗? We just need to apply the reduction step by step, and check what
is left in (JP K)u⃗. Following the reduction operation, if P →u⃗ 1, then the
whole rami�cation is going to be erased from DP : every location, thus every
synchronization and xor condition. What is left is just the base of DP with
an empty rami�cation:

(+, ξ,∅)
⊢ ξ

which is the design called One (de�ned in example 2.2.22), whose generated
behaviour corresponds to the linear logic multiplicative unit 1, when inter-
preting linear logic into ludics. This means that the reduction operation on
the interpretation has the intended intuitive meaning, and further justify the
choice to name the empty process 1, the multiplicative unit, instead of 0.
Moreover, One is the neutral element of ⊙, the merging of designs.

5.3 Deadlocks

Before giving a formal de�nition of deadlocked process, we must be able to tell
when a process P is in normal form, i.e. when there are no synchronizable
pairs of channels in P .

De�nition 5.3.1. A CCS process P is in normal form if there are no syn-
chronizing pairs of channels ready for execution in P ; in other words, there
is not a minimal synchronization available, w.r.t. ≼SP .

A CCS process P is normalizable if there is an execution path P →u⃗ P ′

such that P ′ is in normal form.

Remark 5.3.2. In a setting without replication, as the multiplicative frag-
ment, obviously any process is normalizable, since there is no in�nite execu-
tion path. Moreover, if P is in normal form, the only execution associated
to the interactions on JP K is the empty one (this is a direct consequence of
theorem 4.2.14 on the correspondence execution-interaction). Furthermore,
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since execution is non-con�uent, a process P has, in general, multiple in-
dependent normal forms.

Example 5.3.3. For instance, consider the process

P = a1.b
2 ∣ b3.a4 ∣ a6.c7 ∣ b8

.c9

with u1 = (a1, a4), u2 = (a1, a6), u3 = (b2
, b3), u4 = (b3, b

8) and u5 = (c7, c9).
The execution →u4,u1 leads to

P ′ = b2 ∣ a6.c7 ∣ c9

which is in normal form, since no further execution is possible.

If we instead performed the execution → u2, u4, u5 we would have

P ′′ = b2 ∣ a4,

which is another normal form; as is P ′′′ = a4 ∣ c7 ∣ b8
.c9 after the execution

→u2,u3. Anticipating again the non deterministic choice +, which denotes a
mutual exclusion of two terms during execution, we have that

a.P ′ + b.Q′ ∣ a.P ′′ + .b.Q′′

can lead to either P ′ ∣ P ′′ or Q′ ∣ Q′′, the �rst for the execution →(a,a),
the second for the execution →(b,b). If P ′ ≠ Q′ or P ′′ ≠ Q′′, and there are
no possible executions on either of them, then we have two di�erent normal
forms.

Note, however, that two di�erent execution paths may lead to the same
normal form. For instance, if we take

P = a1.b
2 ∣ b3.a4 ∣ a6.c7 ∣ b8

.c9 ∣ a10 ∣ b11

the process of the previous example, where we added a10 ∣ b11; with u6 =
(a10.a4), u7 = (a10, a6), u8 = (b2

, b11) and u9 = (b8
, b11), then both execution

paths →u2,u3,u6,u9,u5 and →u2,u8,u4,u5,u6 lead to the empty process 1.

With these facts in mind, we may want to talk about normalization
classes, i.e. classes of execution sequences which lead to the same normal
form.
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De�nition 5.3.4. A normalization class of a process P , noted Pi, with
i ∈ I and I a set of indexes, is a set of execution sequences of P (each of the
form u⃗ = (u1, . . . , un)), such that they lead to the same normal form, i.e. if
u⃗, v⃗ ∈ Pi, then

P →u⃗ P
′ = P ′′

v⃗ ← P.

with P ′/P ′′ in normal form. With Pi we note the i−th normalization class of
P .

Now we can give the de�nition of deadlocked process :

De�nition 5.3.5. A process P is deadlocked if and only if

� P is in normal form and

� ∃σ1, . . . , σn such that each σi is a non empty set of synchronizations in
a cycle u1 ≼SP u2 ≼SP . . . ≼SP un ≼SP u1. We denote the set of cycles of
a process P with CP .

5.3.1 Cycles in the process

The �rst consideration we can make about deadlocks is that, from the point
of view of interaction, nothing special is happening. A process is deadlocked
when at least two synchronizations block each other by pre�x order of their

channels; for instance if P = a1.b
2 ∣ b3.a4 ∣ c5.R ∣ d6.S, there is a deadlock

between i = (a1, a4) and j = (b2
, b3): a1 is blocking b

2
and b3 is blocking a4.

Regarding interaction in ludics, a deadlock is no di�erent that any other
part of the process where no communication is possible, as c5.R ∣ d6.S; in
both cases there are no synchronizations available, and thus no execution
can be performed: from the point of view of JP K there are simply no C ∈ B�

P

interacting with either G[i] or G[j]. However, the reason why the interaction
is not possible can give us a hint on how to identify deadlocks, or the absence
of them.

In the example, R(i) andR(j) are impossible to satisfy together. The free-
dom requisites (de�nition 4.1.11) are, respectively, F (i) = {3} and F (j) =
{1}, but F (1) = {i} and F (3) = {j}: there is a cycle 1 < j < 3 < i < 1. In the
restriction designs this is translated into designs requiring interaction to visit
G[1] before G[j] and G[2]; G[j] before G[3] and G[2]; G[3] before G[i] and
G[4]; and G[i] before G[1] and G[4], which is obviously impossible to sat-
isfy. Any design trying to interaction with [i], [j] or the addresses assigned
to their locations is bound to not be orthogonal to one of the restrictions,
and thus ∉ B�

P .
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However, the synchronizations in a deadlock are not bound to be stuck
in this cyclic order : a parallel composition with another process Q could
provide the channels and thus synchronizations needed to break the cycle.
The deadlock is therefore still a potential communication: if either a1 or b3

are erased via execution then the other synchronization (respectively j or i)
is ready for synchronization; and we can expect this to happen in P ∣ Q, with
a or b as external channels of Q.

The deadlock is thus a cycle where two or more synchronizations block
each other, which can potentially be �unlocked�, and it is directly visible in
the restriction designs as two or more incompatible conditions (possibly by
transitivity). We can de�ne a simple relationship ⊳P (we omit the subscript
when clear from the context) on sub designs of DP , such that G[i] ⊳ G[l]
(vice-versa G[l] ⊳ G[i]) if

. . .

⊢ [i].1 6

[i] ⊢ . . . [l] ⊢
p

. . .

⊢ ξ is in R(l) (vice versa, G[l] ends with a 6
in R(i)).
Remark 5.3.6. Note that this condition cannot be checked by looking at all
the possible interaction paths of JP K: if [l] is always visited before [i] in any
interaction path, then obviously [l] must have precedence on [i]; however if
[l] and [i] are in a deadlock there will be no interaction on either of them.

Whenever there is a cycleG[l] ⊳ G[j] ⊳ . . . ⊳ G[i] ⊳ G[l] we have therefore
a deadlock. We can formalize this property as:

Lemma 5.3.7. A MCCS process P is deadlock free if ⊳P is acyclic.

Proof. If ⊳P is acyclic, then we can retrace our steps and conclude, by de�-
nition of ⊳P , that there is no restriction design whose pruned rami�cation is,
by transitive closure of ⊳P , a requisite of its own requisite, i.e. ends with a 6
in a restriction design for his requisite. By de�nition of R(i) and R(l), with
i ∈ SP , l ∈ LocP , then there are no sequence of synchronizations i1, . . . , in in a
cycle, implying that ≼SP is acyclic, and thus that P is deadlock free.

This a trivial consequence on the de�nition of ⊳ and an obvious result
once de�ned the order on locations and synchronizations. However the dual
property, i.e. the presence of cycles in ⊳P , is not a property of ludics and
it is not enough to determine if this cycle in the order implies that there is
actually a deadlock, i.e. if execution on the synchronizations in the cycle
is actually not possible. Indeed, there could be a cycle in ⊳, but possible
synchronizations with channels outside the cycle.
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We could of course always check if there are possible executions or not
on these channels, however our aim is to be able to identify deadlock-free
processes without performing execution, by only looking at the interpretation;
therefore by using properties of designs or behaviours, thus property of ludics,
to �nd from JP K if P is deadlock-free.

5.3.2 Deadlock-free processes and material designs

To answer the questions about deadlock-freedom we can focus on the vis-
itable paths of a behaviour, which applied on the interpretation JP K can give
us some useful insights on the corresponding process P . It is another way
to talk about incarnation, which we already de�ned on behaviours (de�ni-
tion 2.2.23). What we need is the potentially visited part of a design (in a
behaviour) and, by extension, of the entire behaviour.

In general, we can just consider the incarnation of a behaviour as the
incarnation of each design in it. As de�ned in the background section, the
incarnation of a design D ∈ B is the smallest design D′ included in D that
still belongs to B; i.e. the set of chronicles of D visited by an interaction (at
least one) with the orthogonal behaviour. We can start by considering the
set of visitable paths of a behaviour, by which incarnation can be de�ned, as
in [28]. The set of visitable paths of a design D in a behaviour B is

VB(D) = ⋃
C∈B�

⟨D ← C⟩

The set VB(D) determines the incarnation of D in the behaviour B,
denoted ∣D∣BP

(we exclude the subscript if obvious from the context), once
we consider the chronicles corresponding to the set of visitable paths. In the
case of the base design DP , its incarnation yields some useful information on
the process, in particular about deadlock-freedom.

Another property of the interpretation that we only mentioned, is its
purity.

De�nition 5.3.8 (Purity). A behaviour B is pure if all the maximal inter-
action paths with B� do not end with 6 in B; i.e. on maximal interaction
paths the 6 is always found in designs of B�.

Trivially, we have that

Lemma 5.3.9. For any MCCS process P , BP is pure.

This holds by construction: all the maximal interaction paths are the ones
with the base design DP (since the restriction designs are strictly smaller),
which does not have branches ending with 6.
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Purity is a property strongly tied with the notion of type safety, and
so indirectly to behaviours, the types of ludics, as they model linear logic
formulas, and we can compose them via operators corresponding to the con-
nectives ⊗,`,&,⊕. If we consider the daimon 6 as a symbol standing for
an error (one of its many interpretations), which is consistent with the fact
that, in ludics, even false (or wrong) proofs are admitted (since each proof
has a dual, proving the opposite statement), then the notion of purity tells
us that errors do not occur during interaction. For instance, if a behaviour
B is the interpretation of a data type (as found in [66]), then we know that
its type is safe, i.e. computation on this type will not encounter errors (the
same holds for functional types).

In our case, however, purity does not tell us much. While it is still a nice
property, since we are representing the dynamic of processes, modulo the
correspondence execution-interaction, 6 only means that we are stopping
execution at some point; then, the purity of BP only further underlines the
fact that there are no �bad� executions represented by interaction.

Going back to visitable paths, we can consider the incarnation of DP 3.
Once we determine the visitable part of the base design, which correspond
the the executable part of the process, a few properties naturally follow.

Let P be a MCCS process, (+, ξ, I) be the �rst action of DP , and ∣DP ∣
its incarnation; then, let J = {im, . . . , in} ⊂ I be the sub-rami�cation that is
missing in ∣DP ∣, i.e. the su�xes corresponding to the never-visited branches
in DP : by the correspondence execution-interaction, we can conclude that
the elements of P corresponding to these branches will never be part of an
execution sequence.

If we consider the incarnated behaviour ∣BP ∣, the relevant design of this
restricted behaviour is of course ∣DP ∣, since the role of the restrictions is
just to limit the possible interactions, that also make JP K irregular. We
only mentioned regularity as a property de�ned on interaction paths: in
regular behaviours these paths can be mixed and still be interaction paths
on the behaviour; formally they are closed under shu�e, a notion that we
do not need � hence have not de�ned � whose formal de�nition is found in
[30]. Irregularity tells us the opposite: interaction allows only certain ordered
paths. Indeed, they must respect the partial orders <P and ≼SP , thus cannot
be blindly mixed (that is the very purpose of the restriction designs).

The notion of associated execution, and theorem 4.2.14 on the correspon-
dence make sense if we watch at the interaction paths on the base design,

3The incarnation can be calculated without checking all the interaction paths, as shown
in [30].
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which are always the maximal ones. Indeed, restriction designs are needed
to restrain the possible routes interaction can take on the base design, so
that each possible interaction can, then, represent an admissible execution
sequence. Therefore ∣DP ∣ tells us which is the executable part of a process,
and how its normal forms will look like. ∣DP ∣ is thus enough to deduce a few
properties about P , and can give us a su�cient condition to know when a
process is deadlock-free:

Lemma 5.3.10. Let P be an MCCS process.

1. If ∣DP ∣ = DP , i.e. the base design is material, then ∣BP ∣ = BP , and P
is deadlock free.

2. If ∣DP ∣ ≠ DP , then let J = {im, . . . , in} ⊂ I be the sub-rami�cation that
is missing in ∣DP ∣, i.e. the non visitable part of DP . We have that
J is not accessible during interaction and thus that its process coun-
terpart represents the common part of all normalization classes of P ;
furthermore, P is not reducible to 1.

Proof. 1. If DP = ∣DP ∣, then this holds for all designs of BP . This is due
to how the restriction designs are built: being modi�cations of DP , and
strictly smaller than it (they have shorter chronicles, either due to a 6
or a pruning), then for each of their chronicles there is an interaction
visiting it, since there is one visiting the corresponding chronicle on
DP . Therefore, by theorem 4.2.14, P is deadlock free since any part
of P is potentially synchronizable, being visitable in JP K. We don't
know if P →∗ 1, i.e. if there is a single execution path synchronizing
all channels of P , but for each channel, there is at least one execution
sequence where it is synchronized with a dual, i.e. there is not a part
of P that cannot be accessed by execution. This means that there are
no cycles in the order on synchronizations ≼SP , and we can potentially
communicate with any channel of P .

2. For the correspondence interaction-execution, if a part of DP is never
visited, then there are some channels of the process that cannot be
synchronized (either there is no dual, or the execution is blocked for
some other reason), and since each occurrence of a channel name is
interpreted, we also know which these channels are (this can also tell
us if a process is deadlocked for the meaning of [50]).

The non visitable part is always relevant, since interaction in the neutral
part of DP (the w[u, v] for xor conditions, which do not correspond to
channels nor synchronizations) is always possible; therefore if a part
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is never visited, it correspond either to locations, or synchronizations
and locations. This also entails that P cannot be reduced to the empty
process 1.

We have found a su�cient condition to check on the interpretation JP K,
that can tell us if P is deadlock free. Being material is a property of designs
in a behaviour, thus an actual ludical property of the interpretation, which
is what we wanted to �nd. However, this is not a necessary condition, since
it could be the case that P is deadlock-free, but DP is not material in BP .
That is because there may be some other reason that prevents execution on
some channels of P , without them being in a deadlock.

5.3.3 Super�cial deadlocks

In this section we will focus on a speci�c case of deadlock, that is when it
is possible to directly act on channels part of the deadlocked cycle, i.e. when
some of these channels are minimal pre�xes in the process, and thus their
locations principal. In this case we talk about super�cial deadlocks. The aim
of this study is to determine if it is possible to solve this speci�c case of
deadlock in a MCCS process P , by identifying them on JP K and adding a
minimal context by merging of interpretations to �unlock� the process, and
make further executions possible.

A deadlocked process looks like this:

P = a1.b
2 ∣ b3.c4 ∣ c5.a6 ∣ R

where there are no possible synchronizations on R. We use a cycle of 3
synchronizations since it is a general representation of a cycle of length n,
which arises by transitive closure; the case n = 2 is the minimal deadlock.

Our aim is to be able to solve a deadlock by giving a minimal element
(a single channel name) able to break the cycle � by the introduction of a
new synchronization such that an execution on the channels in the deadlock
becomes possible. Of course the requisite is, at �rst, to be able to identify
the deadlock, the channels in it, and if it can be acted on. The notion
we are searching for is the one of super�cial deadlock, in the sense that
it is on the surface of the process, and thus we can act directly on the
synchronizations in question by adding new channels. This means that each
one of the synchronizations in the deadlock must be on a minimal channel
(with respect to <P ), i.e. an external pre�x of the process. We need to �nd a
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good de�nition able to identify these kind of deadlock in a process in normal
form.

At �rst, note that if a synchronization i who has a minimal channel is
not part of any execution path, then we are in one of the following cases:

1. The synchronization i is blocked by another synchronization j, i.e. the
non minimal channel of i is blocked by a channel of j, but i is not in a
deadlock.

2. The synchronization is blocked by one or more lone channels z1. . . . .zn.a ∣ a.R,
on which there is no synchronization available (z1 ∨ . . . ∨ zn ∉ P , or are
internal and not ready for synchronization).

3. The synchronization is in a deadlock.

For example in
P = a.R ∣ b.a ∣ c.b.S ∣ d.e.Q ∣ e.f.d

the synchronization i = (a, a) is blocked by j = (b, b), but they are not in a
deadlock. The synchronization j is blocked by a lone channel c, which does
not have an accessible dual. The synchronizations u = (d, d) and v = (e, e)
are in a deadlock, and u is also blocked by another lone channel.

In case 1 we may repeat the reasoning on this synchronization j, until we
fall in the second or third case, which as we saw may co-exists. We would
like to be able to identify a deadlocked process by unrestricted reduction on
the interpretation, i.e. reduction possibly on internal synchronizations, and
give a general procedure to solve them via interpretation merging.

The property we want for a deadlock to be super�cial is that, if the
synchronizations i1, . . . , in are in an deadlock, then it su�ce to get rid of any
one of them to have an execution path visiting all the others. Let us look
again at the process

P = a1.b
2 ∣ b3.c4 ∣ c5.a6 ∣ R

Here if we erase u1 = (a1, a6) then we can perform the execution →u2,u3 with

u2 = (b2
, b3) and u3 = (c4, c5). If we erase u2 we can do →u3,u1 , and if we erase

u3 then →u1,u2 becomes possible. We can conclude that it is enough to erase a
synchronization from the deadlock to break the cycle, and have an execution
path including all the other synchronizations. On the other hand, if there is
a set of not-executable synchronizations, each one with a minimal location,
such that erasing any one of them generates an execution path in which all
the others are synchronized � this must hold for each synchronization in the
set � then we may conclude that these synchronizations are in a super�cial
deadlock, using this test as de�nition. In this way we can sensibly restrict
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the deadlock cases that we are considering; for example, the test will yield
the following result for the process

P ∶= a1.b
2 ∣ b3.c4.a5 ∣ c6.R

In P , erasing u1 = (a1, a5) let us perform an execution on u2 = (b2
, b3) and

then u3 = (c4, c6), and erasing u2 let us perform execution on u3 and then
u1; but erasing u3 do not free neither u1 nor u2. Thus P is in normal form,
{u1, u2} is a super�cial deadlock, but u3 is not part of the deadlock.

Instead, in

Q ∶= a1.b
2 ∣ b3.c4.a5 ∣ R

with no available synchronizations, or deadlocks, on R, P is in normal form,
and there is not any super�cial deadlock, since erasing u2 would not free u1,
for the interference of c4, which may be either a lone location or an internal
synchronization (there is still a cycle in ≼SP , though).

We are focusing on the super�cial case because some of its channels are
ready for synchronization, therefore it is possible to directly act on them,
and the mutual dependence of multiple synchronizations is solvable by the
elimination of any single synchronization in the cycle � i.e. always by adding
a single element (any single channel dual to the external channel of any
synchronization in the super�cial deadlock). If a deadlocked process has an
internal cycle, instead, we would need to deal with other channels at �rst,
thus the deadlock itself is not what is blocking execution in the current state
of the process.

We have reached a necessary and su�cient condition to check to identify
super�cial deadlocks; we can formalize this fact in the following de�nition:

De�nition 5.3.11 (Super�cial deadlock). Let P be a MCCS process in
normal form, and u⃗ = u1, . . . , un ∈ SP . Then u1, . . . , un are in a super�cial
deadlock if and only if, for each i, in P ∖{ui} (i.e. P where we have removed
the channels of ui) →u⃗∖{ui} is an admissible execution.

The set of super�cial deadlocks of a process P is denoted C sup
P .

At last, as a direct consequence of this fact, we can apply the reduction
on JP K to check if a process P is (super�cially) deadlocked from the inter-
pretation, and which are the elements in the deadlock, information that the
visitable part of DP (its incarnation, de�nition 2.2.23) cannot give us. It
su�ces to consider, for each synchronization u, (JP K)u, and then check its
interaction paths with respect to JP K.
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Lemma 5.3.12. Let P be a MCCS process. If JP K yields no meaningful
interactions (the only associated execution is the empty one) and there is a
set {G[u1], . . . ,G[un]} with 2 ≤ n, u1, . . . , un ∈ SP , such that for each ui in
the sequence, in (JP K)ui exists an interaction path ⟨D ← C⟩ whose associated
execution is maximal, and it visits all the others G[uj], with 1 ≤ j ≤ n, then
u1, . . . , un are in a super�cial deadlock.

Proof. The lemma follows directly by de�nition of super�cial deadlock, and
theorem 4.2.14 on the correspondence execution-interaction.

It is actually enough to consider u ∈ SP such that u has a single minimal
location. However, this would require to directly look at the structure of the
restriction designs. We can formalize this notion of synchronization with a
minimal location, by giving the following de�nition

De�nition 5.3.13. Let P be a MCCS process and u ∈ SP . u is semi-
minimal if it has only one minimal location, or, equivalently, if in R(u)
there is a 6 over only one G[l], for some l ∈ LocP .

Remark 5.3.14. Beware that lemma 5.3.12 entails an exponential explo-
sion. Indeed, two existentials quanti�ers are hidden in the de�nition of su-
per�cial deadlock: P has a super�cial deadlock if ∃ a sequence of synchro-
nizations u1, . . . , un such that ∃ a C�BP for each ui such that interaction with
it visits all the others uj.

It means taking one by one each semi-minimal synchronization, erasing
it from the interpretation by reduction on the interpretation, and checking
interaction paths. Then, for each path of maximal length, take one by one
each semi-minimal synchronization visited, and repeat the procedure, to see
if there are any common synchronizations visited.

Even with some restrictions on the length of the interaction paths (that
is the reason behind the maximal lenght requirement), and on which visited
synchronizations to pick, the procedure still require, in the worst case, an
exponential number of steps with respect to the number of semi-minimal
synchronizations of a process P .

Using lemma 5.3.12 as a test, we can �nd if there is a super�cial deadlock
in a MCCS process P , and which synchronizations are in it.

We are left with �nding a procedure on JP K which will let us unlock the
process P , i.e. after testing if its deadlocked and if there is a super�cial
deadlock, �nding a minimal design (corresponding to a single channel) that
will break the deadlock. Since the test automatically tells us which are the
synchronizations involved, because we can check the presence of a deadlock
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by checking the interactions generated by reduction on the interpretation,
then it is trivial to �nd a minimal design which will break the cycle: we need
to free any one of the minimal locations (with respect to <P ) in the deadlock,
by adding a new G[v], where v is a new synchronization in a xor relation
with any of the synchronizations involved, along with a new G[m], for a
location m labeling the other channel of v. We can add to the interpretation
an element corresponding to a new channel labeled bym, that is dual to some
minimal channel part of the super�cial deadlock (it doesn't matter which),
which therefore generates a new synchronization v that can break the cycle.
However, it could su�ce to free other parts of the process, and still get rid
of the deadlock, thus we need a procedure which will try to blindly free any
external location, and check if there is interaction on the synchronizations in
question: by de�nition of super�cial deadlock, if there is interaction on any
one of the channel in the deadlock, then there is interaction on all of them.

This procedure should be general enough to generate a minimal context
able to reduce the number of super�cial deadlocks in a process P . Indeed,
P may have multiple deadlocks in it, and we would like to be able to solve
them one by one by adding just what we need. By performing execution
on the process directly, we could use a brute-force but e�ective procedure
to solve the deadlock, the trivial one being adding in parallel composition
the dual process, a dual channel for each one in the process, each in parallel
composition with the others, reducing thus the process to 1. Of course this
trivial solution is not interesting, and needs execution on the process, that
in the worst case makes us try all the possible channels and paths.

Our aim is, instead, to act only on the interpretation by performing inter-
action. What we know is that, given a deadlocked process P , exists a context
Q such that P ∣ Q →∗ 1, which is the trivial context from above. What we
are interested in is �nding a context M minimal in size such that

� M ∣ P →v,u⃗ P ′ for some synchronizations v, u⃗;

� CP ′ ⊂ CP (there is at least one less cycle in ≼SP ), and ∃σ ∈ C sup
P such

that u⃗ ∈ σ.

By repeating the procedure, we can �nd an M∗ such that

M∗ ∣ P →∗ 1

Using reduction on the interpretation and interaction we can avoid any ref-
erence to execution on the process, and act only and directly on the inter-
pretation. As always we can work on DP , and then adjust the restriction
designs to meet our needs.



147

De�nition 5.3.15. Let P be a deadlocked MCCS process, and let
(+, ξ, I = {1, . . . , n−1}) be the �rst action of DP . For any location l ∈ LocP

such that G[l] has no G[n], for another location n, as requisite in JP K (i.e.
such that G[n] ends with 6 in a restriction design of R(l))4, let (JlK, [ ]JlK)
be the pair composed by the following design, noted JlK,

ξ.n.1.1 ⊢
⊢ ξ.n.1
ξ.n ⊢

ξ.n + 1.1.1 ⊢
⊢ ξ.n + 1.1

ξ.n + 1 ⊢

ξ.n + 2.1.1 ⊢
⊢ ξ.n + 2.1

ξ.n + 2.2.1 ⊢
⊢ ξ.n + 2.2

ξ.n + 2 ⊢ ⋯

ξ.n + i.1.1 ⊢
⊢ ξ.n + i.1

ξ.n + i.2.1 ⊢
⊢ ξ.n + i.2

ξ.n + i ⊢
⊢ ξ

where each ξ.n + j = xoruj & xorv, with 2 ≤ j ≤ i, and i − 2 is the number
of uj such that G[uj] is a requisite for G[l] in JP K (the number of uj ∈ SP to
which l belongs);

and the assignment function [ ]JlK, such that for a new location m, and
a new synchronization v, [v]JlK = ξ.n, [m]JlK = ξ.n + 1 and

[(uj, v)]JlK = xoruj & xorv = ξ.n + i for each uj (we are treating the pairs
(uj, v) as new xor conditions).

It follows:

De�nition 5.3.16. Let JlK = (JlK, [ ]JlK). The blind merging on l in JP K is

JP K � JlK

with the addition of the following restriction designs before the bi-orthogonal
closure of the merging:

� a new restriction design with G[ξ.n] as requisite for G[ξ.n + 1], mean-
ing that the new location m belongs to the synchronization v;

� two restrictions designs for each clause (uj, ξ.n), as de�ned for any
clause of XP , and the addition of a 6 in R(l)JP K�JlK as last rule of
G[ξ.n] � since l is minimal there is no immediate predecessor, and the
only restriction is the design giving precedence to the synchronizations
to which l belongs. This means that v is in con�ict with any uj to
which l belongs, i.e. l also belongs to v, therefore the channels of v are
labeled by the locations l and m.

4This means that l is minimal.



148

The blind merging is taking, one at a time, the G[l] corresponding to
external locations, and adding to DP an address able to free this locations,
along with a synchronization in con�ict (the xor relation) with each of the
synchronization to which l belongs. This corresponds to adding by parallel
composition a single channel on the process, able to synchronize with the
channel named by this external location. Then we can check the interac-
tions of the merged interpretations and see if there are any interaction paths
describing execution on any synchronizations inside one of the super�cial
deadlocks of P , which we can identify by lemma 5.3.12. If interaction visits
any one of them, then, there is an interaction of maximal lenght visiting all
of them, except the one synchronization whose external location has been
erased in order to break the deadlock; otherwise we may �reset� the interpre-
tation back to JP K, and try on another external location, until the deadlock
is solved.

Remark 5.3.17. Note that we said by lemma 5.3.12, but here we are satis�ed
by deleting a single location of a synchronization in the deadlock, and not
both. That is because the only relevant locations blocking the execution are
the external ones; however we de�ned the test on synchronizations in order
to make it compatible with reduction on the interpretation JP K, which must
be on synchronizations to make sense ( in order to correspond to execution
on P ).

In the case of super�cial deadlocks, we have that

Corollary 5.3.18. Let P be a MCCS process such that JP K is in normal
form. Then, the set of super�cial deadlocks of P , noted C sup

P , is non empty
if there is a sequence σ = {u1, . . . , u2} of semi-minimal synchronizations such
that the super�cial deadlock test (lemma 5.3.12) on σ ends successfully. In
this case P is also deadlocked.

Proof. The proof is straightforward by de�nition of deadlocked process (de�-
nition 5.3.5), of super�cial deadlock (de�nition 5.3.11), and for the super�cial
deadlock test (lemma 5.3.12).

Eventually, we can prove the following:

Lemma 5.3.19. Let P be a MCCS deadlocked process. Then, if C sup
P ≠ ∅,

for any location l labeling a channel u belonging to a σ ∈ C sup
P , JlK is such

that:

1. JP K ∣ JlK = JQK, where Q is an MCCS process not in normal form such
that Q = P ∣ am, with al ∈ P .
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2. The reduction on the new synchronization v introduced by the blind
merging is the interpretation of a process Q′ such that JQK ↝v JQ′K =
(JQK)v and CQ′ ⊂ CP .

Proof. For the �rst point, by the blind merging on l we are adding a new
location m and a synchronization between the channels of l and m (which
means that m is labeling the dual location of l) along with all its possible xor
conditions with other synchronizations to which l belongs. Since the merging
of interpretations corresponds to parallel composition, the result of the merg-
ing is the interpretation of Q = P ∣ am. Q is not in normal form since there
is an interaction visiting the branch G[v], assigned to a new synchronization
v, and thus by theorem 4.2.14 on the correspondence execution-interaction,
there is an execution →v=(am,al) on Q.

For the second point, reduction on v corresponds in the process to an exe-
cution step on v, which erases the channel al, and thus breaks the super�cial
deadlock in which al was. Since the addition of am by parallel composition
is not creating any new cycles, then CQ′ ⊂ CP .

For a more general result, in the case where there are no super�cial dead-
locks, in order to �nd a minimal context unlocking the process by reducing
the number of cycles, we may need to do several combinations of blind merg-
ing until we �nd one that makes a deadlock super�cial. This method would
not be much di�erent than a combinatorial method on the process itself; as
is the super�cial deadlock test, since it entails to check a large number of
interactions. However, once we have found a super�cial deadlock, building
a minimal context to solve the deadlock become extremely easy. Let σ be
a super�cial deadlock, and {l1, . . . , ln} the set of external locations of syn-
chronizations in σ; it su�ces to merge the interpretation with JliK for any
li ∈ {l1, . . . , ln}. All the the successive mergings with JmiK, . . ., JhiK, each time
for an external location of a synchronization in another super�cial deadlock
σi, will give us a minimal context which will break all the super�cial dead-
locks in the process � possibly counting those that arise in the procedure,
that is those who become super�cial after unlocking the previous ones. A
minimal such context will thus look like this:

JliK ∣ JmiK ∣ . . . ∣ JhiK

However this is only one minimal context, that can solve all the super�cial
deadlocks, while we want to determine all such minimal contexts.
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Looking at processes we can notice the following facts: if a1 ∣ b2 ∣ . . . ∣ cn
is a minimal context which removes all the super�cial deadlocks of a process
P , then also the following combinations are:

� a1.b2.⋯.dn−1.cn

� a1.cn ∣ b2.dn−1 ∣ ⋯

� a1.b2 ∣ ⋯ ∣ dn−1.cn

� ⋮

Indeed, if each channel of the minimal context is found sequentially (by
successive tests via reduction on the interpretation), then the structure of the
context does not matter, as long as the sequential order is respected, which
means that the n-th found channel must never be pre�x of the channel named
by the location n − 1, i.e. found at the n − 1-th step; however they can be
independent with respect to <P , i.e. in parallel composition.

This is because at each step we are adding a channel solving one particular
deadlock, thus we just need to have the n-th channel available at the n-th
step to be sure that there is at least one execution path that can solve all
the super�cial deadlocks of P , and that all such contexts are of minimal size
(with respect to the number of channels).

Switching our focus to the interpretation, by using the merging we can-
not quite catch all the combinations of the channels that can be considered
minimal contexts. If we build them one by one, i.e. our JliK, JmiK, etc., then
we can put them together only in parallel composition (that is, the merging
of interpretations), but not in an arbitrary pre�x order. Yet, the merging
can still serve this purpose with some slight modi�cations, that do not touch
the core operation ⊙ on the base designs. If we want to represent the action
pre�x operation al.P on P , we can note that:

� l is smaller than all locations on P (the order get extended).

� No new synchronization is generated, since a is not added in parallel
composition.

This bring us close to the question of type assignment. While our interpre-
tation is not the result of a typing system, we can still try to de�ne operations
on the interpretation that correspond to the basic syntactical constructors of
MCCS processes (for the moment, without sums or recursion), being hence
able to build the interpretation of a process by using these operations on
elementary interpretations, that in our case are still set of designs. The next
step is so to �nd an operation corresponding to the action pre�x.
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5.4 Interpreting the action pre�x

The operation al.P on a MCCS process P entails just the addition of a
channel (and its location), and an extension of the partial order <P . In JP K,
adding a channel as pre�x � say al � entails the addition of a branch in DP
corresponding to that channel in the assignment [ ]P , and an extension of
the partial order, for each minimal location m1, . . . ,mk of P , by a new R(mi)
giving precedence to l with respect to m1, . . . ,mk, during interaction, with
1 ≤ i ≤ k (restriction designs that must be added before the bi-orthogonal
closure). The �nal step is adding al in the domain of [ ]P , as in the merging
of interpretations. Therefore:

De�nition 5.4.1. Let Dal be the single branch positive design

ξ.n + 1.1.1 ⊢
(+, ξ.n + 1.1,{1})

⊢ ξ.n + 1.1
(−, ξ.n + 1,{{1}})

ξ.n + 1 ⊢
(+, ξ,{n + 1})

⊢ ξ

with n the cardinality of the directory of BP (i.e. the cardinality of the
rami�cation of the �rst action of DP ).

We can now give the following de�nition;

De�nition 5.4.2. Let P be a MCCS process, al ∉ AP and

Bal.P = (DP ⊙Dal ∪R(P )DP⊙Dal
∪R(m1) ∪ . . . ∪R(mk))��

where, for 1 ≤ i ≤ k, each mi is a minimal location of P , and each R(mi) is
a restriction built on DP ⊙Dal, with 6 over G[l], and G[mi] pruned. Then,
the action pre�x of al on JP K is

Jal.P K = (Bal.P , [ ]P ∪ [al = ξ.n + 1])

Using this operation on JliK, as Jl1.l2 . . . lnK = Jl1K.Jl2K . . . JlnK for exam-
ple, we can de�ne the intended combinations of minimal contexts, given
an ordered sequence of channels that can unlock the super�cial deadlocks
of the process. The procedure is nothing more than a merging of designs
Jl1K⊙ Jl2K⊙⋯⊙ JlnK, with the addition of the pre�x order via a R(li) for each
li in the sequence, de�ned on the merging itself.

Therefore, given a deadlocked process P and a sequence (JliK, JmiK, . . . , JhiK)
which can reduce C sup

P to ∅ by successive mergings of the elements in the se-
quence with JP K, then a minimal context achieving the same reduction with
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a single merging is any combination of the elements of the sequence by action
pre�x on the interpretation together with mergings respecting the order of
the sequence, i.e. if JliK is found before JmiK, then we cannot have JmiK.JliK.

If instead C sup
P = ∅ then we need to bring us back to a case where there is

at least a super�cial deadlock (since we cannot act directly on any deadlock),
thus blind merge JP K with JlK for any minimal location l, then check if
there are super�cial deadlock (via the interpretation reduction test). If there
aren't any, then repeat the procedure for another external location, and so
on, possibly for every combination of external locations. This method is
not simpler or faster, as said, than acting directly on the process trying all
the possible combinations of channels, however we do not need execution
to know if there is a super�cial deadlock, but interpretation reduction and
interaction. In conclusion, we have obtained a characterization in ludics of
the action pre�x operation, and found how to add a minimal resource to
break a super�cial deadlock.

5.5 Independent reductions

The normalization property is trivial for processes of MCCS (and CCS
without replication in general), since there are no in�nite executions, making
normalization always strong. Thus, a standard normalization theorem, i.e.
that every typable process is strongly normalizing (every execution path leads
to a normal form) is a trivial result. The non trivial fact is that every process
is interpretable in ludics, even deadlocked ones, which for interaction poses
no problem at all.

As we saw, in our case reduction on the interpretation gives an expected
property, i.e. a sort of strong inclusion of the interpretations, which is consis-
tent with the meaning we gave to the dynamic of processes. We can actually
have a version of normalization that takes into account all the di�erent ex-
ecution paths, and hence normal forms, while giving a diamond property for
two synchronizations which are neither ordered (this is possible, being ≼SP
a partial order) nor in con�ict : performing execution on these two synchro-
nizations in any order yields the same result. In this case we talk about
independent synchronizations, the equivalent of concurrent events in event
structures, as de�ned in [27], which are events neither in a causal (or en-
abling) nor in a con�ict relation. At the same time we can talk about in-
dependent executions : execution sequences separated due to a xor condition
(or a sum, though, which we still have to interpret, but can be modeled by
xor conditions), which meet at the end yielding the same result.
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De�nition 5.5.1. We say that

1. two synchronizations u, v ∈ SP are independent if neither u <SP v nor
v <SP u, and (u, v) ∉ XP ;

2. two execution sequences P →u⃗ P ′ and P →v⃗ P ′′, such that u⃗ ≠ v⃗, are
independent if P ′ = P ′′. We say that they commute if both P →u⃗,v⃗ and
P →v⃗,u⃗ are admissible executions.

Now we can give the following result

Lemma 5.5.2. Let P be a MCCS process, and i, j ∈ SP such that i and j
are independent synchronizations. Then it holds the following property:

P

Pi

Pj

Pij

Pji

i

j

j

i

(JP K)ij

(JP K)ji

⇒

⇒
∥

i.e. the interpretation of Pij � the term resulting from the execution →ij,
and the interpretation of Pji � the term resulting from the execution →ji, are
the same.

Proof. The property holds by reduction on the interpretation and de�nition
of independent synchronizations.

The property is formulated and holds for one step executions: for an
empty execution the diagram would obviously collapse. Note that even if the
synchronizations are not independent, the result of an execution path could
be the very same. Indeed, if

P = a1.Q ∣ a2.R ∣ a3.S ∣ a4.T

let i = (a1, a2), j = (a2, a3), u = (a3, a4) and v = (a4, a1);
we have (i, j); (j, u); (u, v); (v, i) ∈ XP . However, it holds that:

P

Pi

Pj

Piu

Pjv

)xor
i

j

u

v

(JP K)iu

(JP K)jv

⇒

⇒
∥
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and for Pui and Pvj as well (always for reduction on the interpretation).
Still, the theorem does not hold for not independent synchronizations, as

a xor condition leads, in general, to two di�erent normal forms. For instance
in

P = a1.Q ∣ a2.R ∣ a3.S

with a ∉ Q,R,S, let u = (a1, a2) and v = (a3, a2. Then Pui⃗ ≠ Pvj⃗, for all

execution sequences i⃗, j⃗, and, for reduction on the interpretation (JP K)u,⃗i ≠
(JP K)v,j⃗; i.e. the theorem does not hold.

Remark 5.5.3. Note that in a setting with the non-deterministic choice
+, which we will introduce next, each sum P + Q, if P ≠ Q, determines a
permanent fork in execution sequences with the environment, since only one
member is kept once synchronization on that member has occurred.

For MCCS processes we have that each execution path leads to a nor-
mal form, and two normal forms are di�erent when a xor condition forks
permanently an execution sequence (which is not always the case). In these
cases we talk about multiple normal forms, each associated to a di�erent
normalization class (de�nition 5.3.4) whose elements are all the execution
sequences leading to that particular normal form.



6. On the extension of the inter-

pretation to CCS

The objective of this chapter is to extend the interpretation to CCS, includ-
ing the non deterministic choice, or sum, denoted +, the private name

operator, called new and denoted ν, and eventually hint at some possible
directions to represent recursive de�nitions (de�ned in section 3.2) inside
standard ludics.

It is divided into two main parts: the �rst, composed of section 6.1 and
section 6.2, is dedicated to replication-free CCS (without recursion opera-
tor), and shows how we can extend the interpretation to include both + and
ν by using the same tools we already built and de�ned for the interpretation
of MCCS. The interpretation is thus directly extended to + and ν without
modifying the part about MCCS, and by using the very same machinery.
All we need to do is explain how we are interpreting these new operations
with the tools at our disposal, and how to adjust the proofs of the results we
obtained in order to include these two new operators.

The second part, starting from subsection 6.3.3, instead is rather experi-
mental, and discusses the problem of extending the interpretation to recur-
sion and replication. It is the most delicate part of the interpretation, since,
in the case of a un-restricted recursion, it requires to extend ludics to non-
linearity. Being unable to reach a de�nitive conclusion, we stop with some
suggestions on how recursion could be added to our interpretation, and a few
attempted solutions that point at some research directions to explore, but
that require further study.

The �rst part starts with a discussion on the non deterministic choice +,
and its role in CCS processes. It is one of the main reasons, along with the
non uniqueness of channel names, and thus the con�ict relation, that make
execution of CCS processes non con�uent. By choosing to synchronize a
channel of one member of +, the other is discarded from the process, thus
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forming a permanent fork in an execution sequence, that eventually reaches
di�erent normal forms.

This property of the sum can be easily represented by the con�ict relation
XP . We can extend XP with a new relation +P (de�nition 6.1.3), that includes
pairs of synchronizations (u, v), where each element belongs to a di�erent
process member of a +. For instance, if al.P + bm.Q, we will add in +P pairs
of synchronizations of the form ((al, ax), (bm, by)), as well as con�ict-pairs on
minimal locations of the two processes, as (l,m); then add the corresponding
restriction designs for these pairs, as de�ned for standard pairs (w,x) ∈ XP .

Since no new construct is used, all the previous theorems will still hold for
replication-free CCS, with some slight modi�cations, except theorem 5.2.12
about the diamond property for the reduction on the interpretation, where
the (de�nition trimming) 5.2.2 needs to be extended with the speci�c case
of non deterministic choices.

In section 6.2 we discuss the private name operator ν, whose role is to
isolate some speci�c channels of a process P , in order to prevent communica-
tion outside its scope. In other words, ν is used to make some channel name
occurrences private, i.e. channels that can communicate only between them-
selves, and are inaccessible by the environment : they are treated as always
fresh channels, thus even if a dual channel name is present in a processes
added by parallel composition, it cannot communicate with its duals inside
the scope of the ν.

The simple solution to interpret the ν is to add a second label to channel
names that are inside the scope of a ν. For instance, if P = νa(a1.b2.a3) ∣ Q,
then we rewrite the process as a1

ν .b
2.a3

ν ∣ Q � which is consistent with the
syntactic rules of ν. In this way, when interpreting the process P , we can
identify these tagged channels, and not consider synchronizations pairs as
(aν , a), i.e. pairs formed by a tagged and a non-tagged channel, even if du-
als: they are not synchronizable pairs, thus do not appear as elements of SP ,
and therefore will be simply not interpreted as branches of DP .

The second part starts with a discussion of replication in the πI-calculus
of Varacca-Yoshida ([67]), in subsection 6.3.1. The controlled replication,
and restrictions on the syntax to ensure linearity, make this kind of soft
replication possibly easier to interpret, seemingly without the need to extend
the syntax of ludics itself. However its not clear if its actually possible to
interpret any possible process obtained with the syntax of the πI-calculus in
the non-extended ludics syntax, especially considering the limit cases.

In subsection 6.3.2 a more solid solution is proposed, by reformulating
the interpretation in Terui's computational ludics ([66]). In the syntax de-
veloped by K. Terui, closer to the one of higher order π-calculus, ludics is



157

naturally non-linear and admits recursive design generators, that seem to be
perfectly suited to interpret standard recursion of CCS. However, Terui's
syntax does have a few drawbacks in the clarity of the correspondence: ab-
solute addresses disappear in favor of pseudo-channel names, therefore the
clear 1 − to − 1 correspondence between addresses and elements of a process
becomes impossible to preserve.

Eventually in subsection 6.3.3, pushed by the need to remain as close as
possible to the standard syntax and interaction of ludics, instead of refor-
mulating our interpretation inside Terui's syntax, our attempted solution is
to go the other way around, and reformulate Terui's �nite design generators
inside a slightly-extended syntax of ludics, using a special exponential address
ξ∗, whose role is close to the linear logic exponential !A.

We also discuss the non-linear version of ludics with repetitions of [6], as
another possible solution to the problem of recursive de�nition, that however
does not �t our needs.

6.1 Sum of processes

The non deterministic choice, or sum, of P and Q, denoted P +Q (de�ned
in 3.2.1) is an operation strongly related to ⊕, the linear logic connective
representing an external choice. Indeed, if we have A ⊕ B we do not know
on which member of the ⊕ we must take a further step in cut-elimination
or proof search, as for focalization (subsection 2.2.1), which implies that the
choice is not up to us, but depends upon the proof1.

In the setting of CCS, the sum + is a mutual exclusion between its
two members, which is waiting for an external choice2, i.e. a context in
parallel composition, to select one process member of the sum to use, by
synchronizing with one of its channels, dropping the other for that execution
sequence. The + may be seen as a primitive operation, precedent to parallel
composition, as in [46], whose behaviour is de�ned through execution.

Execution is extended with the sum in the following way:

P = a.P ′ +Q′ ∣ a.P ′′ +Q′′ →a,a P
′ ∣ P ′′

as another instance we have

a.P ′ + b.P ′′ ∣ a.Q ∣ b.R →a,a P
′ ∣ Q ∣ b.R

1About this interpretation of connectives, and meaning of internal and external choice,
see [40].

2As presented in [4].
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or
a.P ′ + b.P ′′ ∣ a.Q ∣ b.R →b,b P

′′ ∣ R ∣ a.Q
and structural congruence is naturally extended to the sum:

De�nition 6.1.1 (Structural congruence). Structural congruence is the small-
est congruence relation, noted ≡, such that parallel composition and + are
commutative and associative, + also idempotent, and 1 is the neutral ele-
ment of parallel composition and sum; i.e. P + P ∣ R + Q ≡ Q + R ∣ P ;
P ∣ (Q ∣ R) ≡ (P ∣ Q) ∣ R; P ∣ 1 ≡ P and P + 1 = P .

From the point of view of interaction, the non deterministic choice is
equivalent to a xor condition on the minimal channels of the processes in-
volved. For instance, if we take the process above

P = a.P ′ + b.P ′′ ∣ a.Q ∣ b.R,

we could interpret the sum with a xor clause on the synchronizations u =
(a, a) and v = (b, b), thus add (u, v) ∈ XP . This is congruent with event
structures (de�nition 3.2.9), where it is modeled by a con�ict between the
external channels of the processes. Indeed, once we have performed execution
on one process in the sum, the other is excluded from the same execution
sequence. On the other hand, both are possible until a choice is made,
and choosing one of the two synchronizations u and v, by transitivity of <P
and ≼SP , necessarily excludes from any possible continuation all the internal
synchronizations of P ′ (if v is chosen) or P ′′ (if u is chosen) � as in event
structure, where the con�ict relation is hereditary w.r.t. causal implication.
This is e�ectively described by a xor condition, that can, therefore, mimic
the non deterministic sum. So, if P = al.P ′ + bm.P ′′ ∣ Q, a possible solution
would be to extend XP with any pair (u, v) of synchronizations such that
u = (al, xn) and v = (bm, yh), with x varying on a ∈ SQ, and y on b ∈ SQ,
though they have no channel in common.

However problems arise during reduction on the interpretation. Indeed,
by simply putting a xor condition between all the synchronizations on the
most external pre�x of P and Q, then we are coding and keeping into the
base design both members of the sum, even after a reduction on the inter-
pretation on one of the the synchronizations in the new xor clause. Yet, by
the execution rule, only one member is kept after synchronization, and the
other is erased from the process. Therefore theorem 5.2.12 would fail, since
if

R = al.P ′ +Q′ ∣ am.P ′′ +Q′′ →u=(al,am) P
′ ∣ P ′′ = R′

then (JRK)u, the reduction of JRK on the synchronization u, would not be

equal to JR′K, which has no trace at all of Q′ and Q′′, that instead are
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still present in (JRK)u. This suggests that the sum has a stronger commit-
ment than a xor, and needs something more than single standard xor clause,
especially on the side of the reduction on the interpretation.

We saw in section 5.5, for independent reduction paths, that a fork in the
execution sequence due to a xor is sometimes recoverable, and we could �nd
two forked paths which in the end yield the same result. However this is
not the case for the sum, since once a choice has been made the discarded
process is lost for that execution sequence.

Still, a xor generalization is de�nitely suited to represent the sum, with
the due precautions. From the point of view of the graph GP , this di�erent
xor would imply the erasing of not only a few nodes corresponding to the
synchronizations in the added xor clause, but a whole sub-graph of non-
executed synchronizations.

Example 6.1.2. Regarding the reduction on the interpretation a more care-
ful approach to + may require us to erase from the base design the branches
associated to the discarded process (or processes). Let

R = al.P ′ + bn.Q′ ∣ am.P ′′ + bo.Q′′

After an execution step on (al, am) we have

R = al.P ′ + bn.Q′ ∣ am.P ′′ + bo.Q′′ →u=(al,am) P
′ ∣ P ′′ = R′

It is clear that all branches associated to elements of Q′ and Q′′ should be
erased in (DR)u. Therefore we need a way to identify them on the interpre-
tation itself, by coding a local con�ict relation. The way to achieve this goal
is to put in a new con�ict relation not only synchronizations, but also the
pre�x channels (all the minimal channels) of the two processes in the sum
through their associated locations, to be able to transitively recover all their
respective channels, through the partial order <P . In our example, we would
add the special xor clauses (al, bn) and (am, bo), or simply (l, n) and (m,o).

Adding clauses to XP is still be an e�ective choice with respect to interac-
tion, and since we only need the same relations and machinery already used
for MCCS, the implementation of the sum in such a way would be rather
natural. What the execution rule tells us is that there is a mutual exclusion
between the whole processes P ′ and Q′ (the same for P ′′ and Q′′), starting
from their pre�x channel(s). The hard part is to be able to identify which
channel occurrence belongs to which process in the sum from the interpreta-
tion; however we actually only need the minimal ones to transitively exclude
all the others.
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The solution is to add xor-like clauses on both synchronizations and lo-
cations, and then let reduction on the interpretation erase the one location
which was excluded from execution on the sum, all its greater locations (thus
channels), all synchronizations on these greater locations (simply by watch-
ing at restriction designs), and all xor conditions on these synchronizations,
making an hereditary erasing with respect to <P .

To summarize:

� We need to put in con�ict synchronizations which are, respectively, on
an external channel/minimal location of a di�erent member of the sum.
In example 6.1.2, between any pair (u, v) of synchronizations such that
u = (al, xn) and v = (bm, yh), with x varying on a ∈ SP ′ , and y on b ∈ SQ′ .

This is because freedom requisites (de�nition 4.1.11) require interac-
tion to visit synchronizations before locations. Therefore an e�ective
forking in interaction paths, and mutual exclusion of processes, must
start with a con�ict relation between synchronizations, that are visited
just after their xor conditions (due to the restriction designs: subsub-
section 4.1.3)

� We need a new kind of con�ict relation for locations, i.e. pair of, in
general, not dual channel name occurrences. This is because the only
way to transitively recover a sub-process inside the interpretation is
through the coded partial order on locations. In example 6.1.2, we need
the con�ict-pairs (al, bn) and (am, bo); then, by checking the restriction
designs where al, bn, am and b

o
are a requisite for an address assigned

to another location, we can transitively recover the whole processes P ′,
Q′, P ′′ and Q′′.

In this way we can make theorem 5.2.12 and the reduction on the inter-
pretation work as intended. We need to extend the trimming (de�nition
5.2.2) by taking into account if the synchronization on which we are
performing the trimming is the pre�x of a process in a sum or not.

Therefore, we can give the following de�nition

De�nition 6.1.3 (+P ). Let P be a replication-free CCS process. The sum
con�ict relation of P is the set +P , de�ned by cases:

� If P has no sums, then +P = ∅.

� If P has at least one sum, and thus is, without loss of generality, of the
form

P = (ai.P ′ ∣ bj.P ′′ ∣ ⋯) + (ck.Q′ ∣ dh.Q′′ ∣ ⋯) ∣ T
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then let (ai.P ′ ∣ bj.P ′′ ∣ ⋯) = R and (ck.Q′ ∣ dh.Q′′ ∣ ⋯) = R′;

+P = {(xn, ym) ∣ x ∈ AR, y ∈ A′R;n ∈ LocR,m ∈ LocR′ , and
n is a minimal location of LocR,m is a minimal location of LocR′}

∪
{(u, v) ∣ u = (xn,w), v = (ym, z)∧

w, z ∈ AT ;u, v ∈ SP ;xn ∈ R,ym ∈ R′, and

n a minimal location of LocR,m a minimal location of LocR′}.

Note that we explicit the channel names labeled by their locations for
clarity, but the pairs forming the set of +P can be considered as pairs of only
locations (that stand for particular occurrences of channel names); therefore,
when the channel names are either irrelevant or clear from the context, for
brevity we note pairs (al, bm) ∈ +P with just their locations (l,m).

Now, we need to explain how elements of +P are integrated in the base
design of a process P , and which restriction designs are de�ned on them.
The simple answer is the expected one, i.e. there are xor branches for each
pair of +P , and a restriction design de�ned exactly as the ones in R(XP )
(de�nition 4.1.15).

De�nition 6.1.4 (Base design with +). Let P be a replication free CCS
process. Then, DP is built as in de�nition 4.1.14 with the addition of the
following branches:

� For each (u, v) ∈ +P , with u, v ∈ SP , is added a branch w[u, v]

� For each (l,m) ∈ +P , l,m ∈ LocP , is added a branch w[l,m].
The branches w[u, v] and w[l,m] are de�ned as in 4.1.14. Therefore, DP

for a replication free CCS process P becomes:

DP = ( ⊗
x∈SP∪LocP , (u,v)∈XP∪+P , (l,m)∈+P

{G[x],w[u, v],w[l,m]}).

And, for restriction designs, we have:

De�nition 6.1.5 (Restriction designs for +). Let P be a replication free
CCS process, let (u, v) ∈ +P , with u, v ∈ SP and (l,m) ∈ +P with l,m ∈ LocP ;
then both R(u, v) and R(l,m) are de�ned as R(i, j) for (i, j) ∈ XP (de�ni-
tion 4.1.15).

With R(+P ) we note the set of all R(u, v) and R(l,m), for each (u, v), (l,m) ∈
+P ; therefore

R(P ) = R(SP ) ∪R(LocP ) ∪R(XP ) ∪R(+P ).



162

The assignment function must be extended accordingly, with addresses
associated to the pairs (u, v), (l,m) ∈ +P , such that [(u, v)/(l,m)]P = ξ.n for
some n. The interpretation of a replication-free CCS process P , still denoted
JP K, becomes thus

(({DP} ∪R(P ))��, [ ]P )
with DP as in de�nition 6.1.4, and R(P ) as in de�nition 6.1.5.

We also need to make sure that all the previous results are preserved
by this extension to +. In most cases they obviously still hold, since our
interpretation have the very same form as for MCCS processes, with the
addition of a few xor clauses.

Regarding the core theorems, on the correspondence execution-interaction
4.2.14, the correspondence between merging of interpretations and parallel
composition 5.1.18, and the diamond property of the reduction on the inter-
pretation 5.2.12, there are minor revisions to be made.

Correspondence execution-interaction

The correspondence is not a�ected at all by the extension, since it does not
require to modify either the base design or the restriction designs.

Lemma 6.1.6. Let P be a replication-free CCS process. Then theorem
4.2.14 still holds for JP K, i.e. JP K characterizes all executions on P .

Proof. We must prove that +P properly represent the non deterministic
choice +. Since + does not add execution sequences to P but actually prevents
some, then we only need to show that the corresponding interaction paths �
by de�nition 4.2.4 � are not possible on JP K.

This follows directly by de�nition of +P and R(+P ): the restriction de-
signs in R(+P ) prevent interaction to visit in the same path branches associ-
ated to elements of two members in a +.

Merging of interpretations

The merging of interpretation requires some slight addition to be extended
to +. The de�nition of merging of base designs (def. 5.1.9) is not a�ected
by the introduction of +P . This is because the only di�erence in DP for a
process P with sums is that there are more xor branches, which makes no
di�erence at all for the merging.

Instead, the de�nition of NP ∣ Q (def. 5.1.8) must take into account
also new+P ∣ Q, which is the set of the new sum con�ict-pairs (u, v) for
u, v ∈ newSP ∣ Q, when u and v have each one channel in a di�erent member
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of a sum. The extension is however obvious, and requires little work. We have

new+P ∣ Q = {(u, v) ∣ u, v ∈ newSP ∣ Q, and such that one channel of u and
one channel of v are minimal channels belonging each to a di�erent member
of a sum + in either P or Q}

This set is recoverable from the assignment functions [ ]P and [ ]Q, and
from R(LocP )∪R(LocQ) (to �nd which are the minimal locations). We don't
need to add in new+P ∣ Q pairs of locations, since there are no new channels
generated in the parallel composition, but only new synchronizations.

We need to add to NP ∣ Q the branches corresponding to the new con�ict-
pairs of new+P ∣ Q, as we did for newXP ∣ Q. Hence we have thatR(new+P ∣ Q)
is de�ned exactly as R(newXP ∣ Q), but for the set new+P ∣ Q de�ned above.
Of course, DP ⊙DQ takes into account the extended NP ∣ Q, as well as lemma
5.1.10, on the equality of base designs, that obviously still holds.

Lemma 5.1.15 thus becomes:

Lemma 6.1.7. Let P,Q be replication-free CCS processes. It holds that
R(P ∣ Q) = R(P )DP ⊙DQ

∪ R(Q)DP ⊙DQ
∪ R(newSP ∣ Q) ∪ R(newXP ∣ Q) ∪

R(new+P ∣ Q).
and still holds for the same reasons, along with the fact that the set

new+P ∣ Q obviously catches all the new +-con�ict pairs arising in P ∣ Q.
This leads to the extension of de�nition 5.1.16 with R(new+P ∣ Q) as well,

and to

Lemma 6.1.8. Let P be a replication-free CCS process. Then, theorem
5.1.18 still holds, i.e. JP K � JQK = JP ∣ QK.
Proof. The proof is carried out exactly as for the MCCS case.

Reduction on the interpretation

For our reduction on the interpretation a more complex extension is required.
After a reduction step on a synchronization including a channel part of a sum,
we need to recover the whole sub-process associated with the other member
of the sum, and erase it. For instance, if P = a.Q +Q′ ∣ a.R, and we want
to perform a reduction on u = (a, a), when trimming the base design DP we
need to associate to u also all the branches corresponding to Q′.

De�nition 6.1.9 (Extended Trimming). Let P be a replication-free CCS
process of the form

P = al.Q +Q′ ∣ am.R
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To identify the sub-process to be erased along a synchronization u = (al, am),
we need to extend de�nition 5.2.2, the trimming of a synchronization on
DP , by including the following to the branches associated to the synchroniza-
tion u :

� xoru & xorv and G[v] for all (u, v) ∈ +P ;

� xorv & xorw for all such v;

� xorl & xorx and xorm & xory for all (l, x), (m,y) ∈ +P ;

� G[x] and G[y] for all such x, y;

� All branches found by repeating the previous two steps (both the
xor and G[ ] branches) for all locations n and o such that x <P n and
y <P o, that can be transitively recovered by:

1. �nding the immediately greater location of each such x and y by
checking in which restriction design G[x] (or G[y]) ends with a
6 (which means it is a requisite for another location).

2. Repeating the above step for the found locations.

This is needed to identify all channels of Q′.

� All G[z] with z ∈ SP , such that G[z] ends with 6 in the restriction
design of any of the locations found in the previous steps (x, y, n, o and
greater locations) � this is to �nd synchronizations that are on a channel
labeled by one of the erased locations.

� xorz &xori for all (z, i) ∈ XP ∪+P , for all z found in the previous step.

In this way, the reduction on the interpretation (de�nition 5.2.11),
as well as all the de�nition and lemmas based on the trimming, are extended
to replication-free CCS processes.

Lemma 6.1.10. Theorem 5.2.12 still holds for replication-free CCS pro-
cesses.

Proof. By the extended de�nition of trimming (def. 6.1.9), all lemmas used
in the proof for the MCCS case (lemma 5.2.5, corollary 5.2.6, and lemmas
5.2.9 and 5.2.10) still hold for the replication-free case, since we are erasing
exactly the sub-process in a + excluded by execution, that is being performed
on the other member of the sum.
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Example 6.1.11. Let:

R = al.P ′ +Q′ ∣ an.P ′′ +Q′′ →u=(al,an) P
′ ∣ P ′′ = R′

The reduction on u = (al, an) ∈ SR, i.e. (JRK)u, implies erasing from the
rami�cation of DR, in addition to the trimming for MCCS processes, also
the branches xoru&xorv, xorl&xorn ∈ +R, all branches G[x] with x ∈ LocQ′ ∪
LocQ′′ ∪SQ′ ∪SQ′′, and all branches xorx & xory for such x (considering both
XR and +R).

6.2 Name Hiding

The ν operator (called new), declares that a channel name is hidden, or
private, inside its scope, i.e. that cannot communicate with channels outside
it; we present it with the syntax and rules borrowed from the π-calculus. Its
role is to forbid communication on some channels, making them private, in
the sense that no external process in parallel composition can access to them.
It is a key tool to ensure safe communication in concurrent programming, by
respecting the communication protocols. The intended e�ect of the operator
is that the channel names it refers to are always fresh, and therefore can
be accessed (for instance to send/receive data) only by a dual channel also
inside its scope. If P = νa (al.R) ∣ am.Q, al and am cannot communicate,
therefore are not a synchronizable. For clarity we close the scope of the ν
under parenthesis as we did in the example.

A channel name under ν is considered bound, otherwise free. We denote
with bn(P ) the set of bound names, and with fn(P ) the set of free names.
The rules which let us push ν inside a process, until it is applied to exactly
its scope, are the following:

νa(P ∣ Q) ≡ νa (P ) ∣ Q

if a ∉ fn(Q);

νa(P ) ∣ νb(Q) ≡ νa(νb(P ∣ Q)) ≡ νb(νa(P ∣ Q))

if a ∉ fn(Q) and b ∉ fn(P ). ≡ is the smallest congruence relation which
extends structural congruence (def. 6.1.1). We note a sequence
νa1(νa2 . . . (νan) . . .) with νa⃗. The execution relation is also modi�ed, either
requiring that synchronizations may happen only between two dual channels
inside the scope of the same ν, or that synchronizations simply may not
happen between dual channels if only one is inside the scope of ν.
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De�nition 6.2.1 (Synchronizations under ν). Let P be a replication-free
CCS process with name hiding. Then we have two possible choices of re-
strictions for SP :

� SP contains only pairs of dual channels (a, a) such that they are both
inside the scope of the same νa. Therefore (a, a) ∈ SP if and only if P
is of the form

νa(a.P ′ ∣ a.P ′′) ∣ Q.

� SP contains pairs of dual channels (a, a) such that either they are both
inside the scope of the same νa or they are not bound by any νa.
Therefore (a, a) ∈ SP if and only if P is either of the form

νa(a.P ′ ∣ a.P ′′) ∣ Q,

or the form

a.P ′ ∣ a.P ′′ ∣ Q

but not of the form

νa(a.P ′) ∣ a.P ′′ ∣ Q.

this means that the ν is an operator that can also enable interaction, other
than preventing it. This entails that the execution rule for replication-free
CCS processes with ν is of the following forms:

� either only:

νa(a.P ′ ∣ a.P ′′) ∣ Q→(a,a) P ′ ∣ P ′′ ∣ Q

� or both:

νa(a.P ′ ∣ a.P ′′) ∣ Q→(a,a) P ′ ∣ P ′′ ∣ Q

and

a.P ′ ∣ a.P ′′ ∣ Q→(a,a) P ′ ∣ P ′′ ∣ Q

(note that we are ignoring the + case only for brevity).
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Internal choice

The ν has various purposes, and can be even used as an alternative to the
non deterministic choice, even if not equivalent. Indeed it can be used to
de�ne a notion of internal choice, in the sense that it is independent by the
environment/context, but which still consists of a mutual exclusion between
two sub processes. The sum is an external choice since if R[ ] ∶= a.P +
b.Q ∣ [ ], where [ ] is a placeholder that can be �lled by another process3,
then execution can yield either P or Q as result, depending on which term
will �ll the empty space, that could synchronize on either a or b; thus di�erent
contexts may yield di�erent results.

However, another kind of sum can be de�ned, that we denote ⊞, but is
usually denoted ⊕ (which, however, would be inconsistent with the di�eren-
tiation between external and internal choice), in the following way:

De�nition 6.2.2 (Internal choice). Let P,Q be CCS processes. Then,

P ⊞Q = νa(al.P ∣ am.Q ∣ ao) = τ.P + τ.Q

Here a ∉ P,Q, and τ is an internal action (which may be executed or not
independently of the environment), a sort of un-observable or silent action
in the literature4, in the sense that we do not know if there has been a syn-
chronization on it, nor its content (which channel names are involved), and
thus cannot be synchronized by our decision. The fact that the channel a is
hidden means that it cannot interact with the environment, and thus only
an internal synchronization may let us communicate with P or Q; however
not with both in the same execution sequence.

Indeed, this is achieved by exactly a xor condition on two synchroniza-
tions, u = (al, ao) and v = (am, ao): since ao is in common, and being a
an external and hidden channel, then the xor condition (u, v) ∈ XP⊞Q e�ec-
tively forks execution in two parallel paths, which cannot be re-joint. The
result of this internal sum has therefore the same e�ect as the external sum,
though due to an internal choice: one of the members of the sum is discarded
from the process, and cannot be synchronized on anymore in the same ex-
ecution sequence. Thus, we do not need a new relation to represent the
internal choice, but it su�ces to use the ν and xor conditions properly, fur-
ther justifying our choice of using a con�ict-like relation to represent the non
deterministic choice.

3Formally called an evaluation context: a process with a placeholder in it, an empty
space which can be �lled by any term of the syntax: [4].

4In [46] it is considered an unobservable internal action.
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6.2.1 Representing ν inside JP K

About the interpretation of ν, assuming we can isolate the scope of the
operation, we can note that it a�ects interaction only negatively, i.e. it gives
restrictions to the possible executions on the process, without adding new
ones. Thus, we can just internalize in JP K the possible restrictions on the
de�nition of synchronizations, i.e. the restrictions on SP of de�nition 6.2.1,
in order to consider only the intended pairs. Exploiting the rules on ν, and
taking the lax restriction of SP to be in a more general case, we can denote
with alν a channel in the scope of a ν on its name; then we need to exclude from
SP any pair (al, am) such that only one channel is tagged with ν, i.e. either
alν or a

m
ν . If both are tagged with ν then the pair is still a synchronization .

This solution implies that channel names tagged with ν must be unique,
modulo renaming. Indeed, there is no loss in doing that, since one of the
purposes of the operation is to note that a hidden channel aν is not the same
that another a, even if they share the same name. An equivalent solution
would be to rename the channel tagged by the ν with a new unused channel
name: a constantly fresh channel, refreshed whenever the process is composed
with a term containing that channel name. Obviously this is not a viable
choice, since we would be required to rename the channel each time a new
context is added by parallel composition, if the same name appear again; or
impose a renaming on any new context, such that the name(s) under ν in
the process is (are) renamed in the context, if present.

Instead of having multiple operations and notions (fresh variable, and re-
namings), we can just add the ν operator. Since this is the indented meaning,
and is consistent with the given rules, it has no particular consequences the
assumption that if we have νa P and νa Q, once in a parallel composition,
we have renamed one of the two a to a fresh channel b in order for it to
be unique, with νa(P ) ∣ νb(Q) as result. In this way there is no confusion
between tagged channels: if they are tagged and dual they can synchronize,
otherwise they can't.

The interpretation can thus take into consideration only synchronizations
of the form (al, am) or (alν , amν ), but not of the form (al, amν ). This means
we are not adding branches G[x] in DP for these pairs, and there is no as-
sociated address in the assignment [ ]P , nor any kind of restriction or xor
conditions: they are simply not considered elements of SP or the pro-

cess P . The consequence on the merging of interpretations is that, when
unifying the assignments, the pairs of dual channels (represented by their
locations) where one is tagged by ν and the other is not, are not counted as
new synchronizations, and thus do not appear in the merged designs.
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This can be an accurate representation of νa, since we are allowing exe-
cution only on dual channels inside the same scope of the new, scope that we
can e�ectively determine. This implies that inside DP and R(P ) there is no
trace at all of the νs that can occur in the process P , we can only check their
presence from the assignment [ ]P , which only tells us singularly which chan-
nels occurrences are inside the scope of a ν � hence the assignment still does
not need any additional information about the structure of the process. The
result is that we forbid some interaction paths by not interpreting, instead
of resorting to more restrictions designs.

Lemma 6.2.3. Let P be a replication-free CCS process with hidden names.
Then, its interpretation JP K still characterizes all executions on P .

Proof. The proof is elementary, by de�nition 6.2.1: there are no interac-
tion paths whose associated execution sequence contains a synchronization
(al, amν ), since while [al] and [amν ] ∈ [ ]P and have associated branches on
DP , the pair (al, anν) has none, and simply does not appear in DP .

Clearly also all the other results are una�ected by the restriction on SP ,
and the introduction of tagged names.

Readback of the process

This discussion brings us to the problem of reading back a process P from the
interpretation JP K, something that we have de�ned only for interaction paths.
Reading back the result of an execution associated to an interaction is simple
enough, but reconstructing the process from the interpretation requires some
more steps. We can get from the assignment [ ]P all the channel names
occurrences, and the partial order <P can be induced from R(l), for each
l ∈ LocP , by transitive closure. Whenever two channels al, bm are not ordered,
with respect to their locations, thus neither l <P m nor m <P l, then they
are put in parallel composition. The problem lies with the ν, which leaves us
with two choices: either simply put a ν at the end of the reconstruction of the
process, thus νa⃗(P ), for each channel a ∈ a⃗ such that aν is in [ ]P , or identify
the minimal scope by a step-by-step construction. The �rst way is however
much simpler, therefore we will de�ne the read back on the interpretation in
the following way:

De�nition 6.2.4. The read back on the interpretation JP K of a replication-
free CCS process P is the term build by the following steps:

� Base step: al00 + al11 ∣ al22 + al33 ∣ . . . ∣ aln−1n−1 + alnn for each minimal
location li, with 0 ≤ i ≤ n, channel ai which it labels, and xor condition
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on minimal locations (li, lj) ∈ +P . Minimal locations li are such that
G[li] has no location requisite in R(li).

� Inductive step: alii .(b
mj

j +cohh ) for each location mj such that G[li] is a
requisite for G[mj] (and G[oh]), and (mj, oh) ∈ +P . Or alii .(b

mj

j ∣ cohh )
if bmj and coh are in no relation, but their are both one-step greater
than ali. This step is then repeated for the 1-step greater locations of
the minimal ones (until there are locations).

� Final step: After the inductive step(s), we need to add νa⃗(P ) for each
aν ∈ [ ]P , with P the result of the previous two steps (note that we have
omitted the possible ν subscript in the �rst two steps only to lighten the
notation).
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6.3 Non-linear extensions of ludics and recur-

sive de�nitions

In this section we �nally give some directions, and attempted solutions, to
internalize recursive de�nitions in our interpretation. We have the option to
deal with either the standard recursion operator of CCS, or the replication
!a.P of the π-calculus.

To handle replication in its π-calculus form (de�ned in section 3.3), we can
possibly exploit its controlled version of [67], used to type event structures
by considering a restricted version of the π-calculus: a linear typed version of
Sangiorgi's πI-calculus [63]. This calculus has the same expressive power as
the less-restricted version (with free name passing), and linearity only breaks
for replicated outputs, but determinism is preserved by the uniqueness of
inputs. This allow us to still use the partial orders ≼SP and <P to manage
synchronizations, and attempt a natural integration of replication in our
interpretation, without extending or modifying the syntax and rules of ludics.

6.3.1 Replication in the πI-calculus

In [67] a more general version of the πI-calculus is considered, but with the
same core restrictions to ensure linearity. Replication is of the form !x(y⃗).P ,
and follows the usual rule of the π-calculus:

!x(y⃗).P ∣ x(y⃗).Q→ !x(y⃗).P ∣ (νy⃗)(P ∣ Q)

Firstly, only bound names are passed during interaction, thus an output can
be only of the form νy⃗(x(y⃗).P ). Secondly, the behaviour of processes is
restricted with the following discipline:

� For each linear (not under !) name, there are an unique input and an
unique output.

� For each replicated name there is an unique replicated input, with zero
or more dual outputs.

We are particularly interested in the second condition, which forbids pro-
cesses as

!b.a ∣ !b.c ∣ ⋯ or !b.a ∣ !b.c ∣ ⋯
while allows processes of the form

P = !b.a ∣ b1 ∣ !c.b
2
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even if a b output appears twice, apparently violating the �rst rule, since
there is only one replicated input per-name, the process is still valid. Indeed,
each output can communicate with the same, and only, input. So, only
inputs can be replicated, and each replicated channel must be unique. Only
a replicated input allows multiple outputs, that cannot be a replicated as
well; this entails that each replicated channel needs a linear and consumable
dual for each execution step.

With respect to our interpretation, this means that we could treat a
replicable channel name as an in�nite branch, that can be visited each
time after a synchronization with one of its duals. It would follow that all
synchronizations having in common the replicable channel would not be

in a xor relation.
Going back to the example above, it means that the synchronizations

i = (!b, b1) and j = (!b, b2) would not be in XP . The base design would have
as sub designs in�nite sequences of the form G[!b] =

⋮
⊢ [!b].1.1.1
[!b].1.1 ⊢
⊢ [!b].1
[!b] ⊢

Restrictions on channels pre�xed by !b would still be of the form

6
⊢ [!b].1
[!b] ⊢ ⋯

p
[a] ⊢

⊢ ξ

In�nite sequences are needed to preserve modularity (the number of syn-
chronizations on !b depends by the context), and to possibly have dynamic
restrictions: the n-th rule of G[!b] would be accessible after the n-th syn-
chronization on !b, which can be determined if, at any execution step, only
one choice of synchronization is possible on !b; i.e. if only one dual b is avail-
able at a time (even if multiple are present in the process): this would let us
determine in advance the order in which each b synchronizing with !b can be
visited, and thus its restriction design.

Both synchronizations i = (!b, b1) and j = (!b, b2) can be part of the same
execution sequence, thus we want that both G[i] and G[j] can be part of
the same interaction path: this would be the case if there is no xori & xorj

branch, and restrictions forbidding interaction on both at the same time.
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If the setting were non-linear, a lot of issues would arises regarding the
su�x channels of !b not under exponential: if !b.a, we can synchronize the
channel a only as many times as we already have synchronized the channel !b,
and thus would need to count during interaction how many times we visited
the branch of G[!b] (i.e. performed synchronization on the channel !b), to let
the context communicate multiple times with a. However, for the linearity
constraint, there can be only one input a, unless it is under exponential (!a).
In the �rst case, there would be at most one synchronization on a, and thus
no need to count or express more complex restrictions. Instead, a possible
issue is present in the second case, since there could be a potentially in�nite
execution sequence; for instance with a process as

P = !b.c ∣ b1 ∣ !c.b
2

However, this �xed-point-like cases (the process can only return to its start-
ing form after 2 execution steps) could be treated via cycles in interaction
(an interaction as in [6] de�ned via an abstract machine).

The uniqueness of linear inputs/outputs simplify the setting enough to
attempt a solution without passing to non-linear ludics, or introducing ex-
ponential addresses. There is, however, another possibility that could let us
represent a full unrestricted replication, also in the form of recursive def-
initions and without linear restrictions, that comes from an already existing
version of ludics dedicated to achieving a stronger computational power.

6.3.2 A reformulation in Terui's computational ludics

K. Terui, in [66], formulated a complementary syntax for ludics, called com-

putational ludics (c-ludics), closer to higher order π-calculus. His objective
is to achieve practical advantages towards applications, with the general goal
of developing an interactive theory of computability and complexity based on
ludics. To this end, he drops the notation based on absolute addresses, the
places in a proof, and replaces them by names binding variables. A variable
bound by a name a (in a set A) let us link actions under the justi�cation re-
lation, and thus implicitly induce their relative addresses (one a sub-address
of the other). This makes the manipulation of syntax easier, letting us nat-
urally add internal cuts (while standard designs are cut-free), identities as
variables in a rami�cation, and pass to a non-linear context.

The feature that seems most interesting to use is the latter, in particular
the possibility to represent in�nite designs by a �nite generator (by de�nition,
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all designs are representable in such a way5), allowing recursive de�nitions ;
using designs generators could let us easily extend the interpretation to CCS
with an un-restricted replication.

C-ludics

Terui's syntax is based on a signature A = (A,ar), where A is a set of names,
and ar ∶ A→ N is a function giving an arity to each name; a denumerable set
of variables V , denoted x, y, z, . . ., is also needed. A positive action is either
6, Ω (denoting the divergence) or a, with a ∈ A; a negative action is x ∈ V or
a(x1, . . . , xn), with a ∈ A and ar(a) = n. x1, . . . , xn are distinct variables, and
x⃗a notes a vector of the arity of a. Informally, a design D is co-inductively
de�ned by

P ∶∶= 6 ∣ Ω ∣ (N0 ∣ a⟨N1, . . . ,Nn⟩),

N ∶∶= x ∣ ∑a(x⃗a).Pa.

where P is the form of positive designs, N of negative ones, and x⃗a
is a vector of variables of ar(a). Here a name denotes both the polarity
and cardinality of the rami�cation of a rule, and, in the negative rule, the
variables stand for each sub-address of the rami�cation.

If in a positive design P = N0 ∣ a⟨N1, . . . ,Nn⟩, N0 ≠ x, for a variable x,
then we have a cut (however the name of N0 must be dual to a); otherwise
N0 = x, and, if it is bound by a negative action a(x⃗a), thus with x ∈ x⃗a,
then a(x⃗a) justi�es P . If a variable is inside the scope of a positive action,
i.e. a⟨N1, . . . , x, . . . ,Nn⟩, then it is called an identity. Negative actions are
instead justi�ed by the positive action in which they are included. The ∑
notes an in�nite sum of all names, with an Ω in place of Pa for all but �nitely
many of them � each member of the sum is a di�erent premise.

Absolute addresses as focus of actions disappear from the syntax, becom-
ing relative to the justi�cation or cut relation, in favor of a more concise
and dense presentation. While this might be useful for representing com-
putational power, it hinders our interpretation, since it is based on a corre-
spondence between absolute addresses and the sets SP , LocP ,XP (and +P ).
If we use names in place of addresses, then we would not have a way to
use the same name in a rule with a di�erent number of premises, since each
name has an unique arity, and the assignment is not naturally inherited by
the justi�cation relation on actions of the rami�cation; this leads to super-
imposition and further renamings when performing operations such as the
merging or subject reduction. Shifting the correspondence from addresses to

5A universal generator can be de�ned: [66], section 2.2.
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variables would not work properly either, since the variables stand for the
sub-addresses of a rule, which could be replaced by a 6 or a pruning, or their
action erased in a trimming, leaving us with no way of determining which
element correspond to the missing premise. Everything considered, a refor-
mulation of our interpretation is still possible, since it holds the following:

Remark 6.3.1. Standard ( ≠ Ω, linear, cut and identity-free) c-designs6

correspond to the original designs.

Example 6.3.2. Assuming an assignment from LocP ,SP ,XP to names, we
have the following correspondence with de�nition 4.1.14:

� G[u] = [u](xu).(xu∣[u.1]⟨0⟩).

� w[u, v] = [xoru](xu).xu∣[xoru.1]⟨0⟩ + [xorv](xv).xv ∣[xorv.1]⟨0⟩.

� DP = x0∣a7⟨G[x], . . . ,w[x, y], . . .⟩, with x varying on SP ∪ LocP , and
(x, y) on XP .

where [ ] notes the assignment function.

Interaction is called reduction, and is de�ned in λ-calculus style on pos-
itive c-designs with a cut, by:

(∑a(x⃗a.Pa)∣a⟨N⃗⟩ → Pa[N⃗/x⃗a],

where N⃗ is of lenght ar(a). The reduction relation selects the a(x⃗a) that
matches with a⟨N⃗⟩, making sure that they have the same arity. Then, in the
corresponding Pa, each variable is substituted by a negative design inside the
scope of a; reduction can then continue on Pa[N⃗/x⃗a], until a normal form is
reached (a variable x or 6), or it diverges (Ω).

Example 6.3.3. Using the reduction relation, we can rewrite example 2.2.31
using prunings and 6 easily:

� D = x0∣a0⟨a1(x1).x1∣a11⟨0⟩, a2(x2).x2∣a21⟨0⟩⟩

� C = a0(x1, x2).x1∣a1⟨a11(x11).x2∣a2⟨a21(x21).6⟩⟩.

� E = a0(x1, x2).x2∣a2⟨a21(x21).x1∣a1⟨a11(x11).6⟩⟩

� D∗ = x0∣a0⟨0p, a2(x2).6⟩.
6We should add, over the signature RA M = (Pf(N), ∣ ∣), the �nite set of parts of N,

and the cardinality ∣I ∣, for I ∈ Pf(N). [66], remark 2.2.
7It does not matter which name we choose here, since the base is an arbitrary address.
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where p denotes a pruning, and 0 the empty negative action: it denotes that
the + action has a premise, but there is no further action in the branch. Both
reductions C∣D and E∣D reach 6 after �ve reduction steps. Instead, only E is
orthogonal to D∗. To perform reduction, we must substitute x0 in D∗ with E ,
obtaining

E∣D∗ = (a0(x1, x2).x2∣a2⟨a21(x21).x1∣a1⟨a11(x11).6⟩⟩)∣a0⟨0p, a2(x2).6⟩

Reduction reach 6 in only 2 steps:

1. (a2(x2).6)∣(a2⟨a21(x21).0p)∣a1⟨a11(x11).6⟩⟩.

2. 6.

Instead, the reduction

C∣D∗ = (a0(x1, x2).x1∣a1⟨a11(x11).x2∣a2⟨a21(x21).6⟩⟩)∣a0⟨0p, a2(x2).6⟩

at the second step diverges:

1. (0p)∣(a1⟨a11(x11).6)∣a2(x2).6∣a2⟨a21(x21).⟩⟩.

2. Ω; since 0p has no P0 and variables to perform the substitution on.

The reformulation in c-ludics thus does not a�ect restriction designs, or
the behaviour BP , and the correspondence between execution and interaction
still holds.

About the merging of interpretations, the operation ⊙ is simply an ex-
tension of the arity of a positive rule � or a substitution with a name of the
arity we need � by putting together in the scope of this new action all the
negative designs that we have. Therefore from

D = x0∣a1⟨N1, . . . ,Nk⟩

and
C = x0∣a2⟨Nk+1, . . . ,Nk+n⟩

we obtain
D ⊙ C = x0∣a3⟨N1, . . . ,Nk,Nk+1, . . . ,Nk+n⟩.

The projection operation instead, used for the reduction on the inter-
pretation, requires us to erase the sub-rami�cation associated to a certain
synchronization from DP , in order to reduce the arity of the �rst action a,
and remove the corresponding negative designs (somewhat the dual opera-
tion of ⊙). A change to a name of the right arity might be required, but
the operation itself poses no issues. When reducing DP to One, the form we
obtain is One = x0∣a⟨⟩ = x0∣a, a positive action with a 0-ary name.
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Finite design generators

What we can gain from the syntax of c-ludics is a natural extension to non-
linearity and recursive de�nitions, via designs generators. Terui's de�nition
used two sets, one of positive and one of negative states, and a labeling
function assigning, respectively, positive and negative designs to them.

De�nition 6.3.4. A generator G is a triple (S+, S−, l), with S+ and S−

disjoint set of states, and l a labeling function, de�ned on S = S+ ∪ S−, such
that:

� For s+ ∈ S+, l(s+) is 6, Ω or of the form s0∣a⟨s−1 , . . . , s−n⟩, such that
a ∈ A, ar(a) = n, and s−0 , . . . , s−n ∈ S−.

� For s− ∈ S−, l(s−) is either a variable x, or of the form ∑a(x⃗a).s+a,
such that s+a ∈ S+ for every a ∈ A.

A pointed generator is a pair (G,sI), where sI ∈ S notes the root of the
design generated by G.

For instance, the ordinal ω can be represented using a �nite design

generator i.e. a generator with a �nite number of states (the example can
be found in Terui's paper [66], section 2.2). An universal pointed generator
can be de�ned as well, therefore we can consider every design as the result
of this generator.

Terui's syntax thus provides an unitary setting in which both linear and
non-linear traits can be represented at the same time, with the original lu-
dics recoverable by a restriction of the syntax. For instance, the separation
theorem holds for standard c-designs8; but, at the same time, c−designs are
particularly appropriate for representing functions and data-set, thanks to
cuts and identities (when using variables as premises of the rami�cation, in-
stead of designs), increasing ludics computational power, and reduction on
design generators is possible through a Krivine's-like abstract machine.

Why the correspondence doesn't work

The main issue we have with Terui's syntax is, as we already noted, that
the assignment function [ ]P cannot be as straightforward as in standard
designs. If we substitute addresses with names, then we could have di�er-
ent names that should correspond to the same element, since every time we
change the arity of a rule, either by merging or reduction on the interpreta-
tion, we need to change also the name of the action. Another di�culty is that

8Theorem 3.9, [66].
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we can track a justi�ed sequence of actions only using variables : knowing
which action corresponds to, for instance, the continuation of the branch of
a G[u], is not natural at all, since it requires us to make reference to two
distinct set of elements � both names and variables � while the assignment
[ ]P should be to one set only.

In the standard syntax, once we have an assignment as ξ.1 = [u]P , we
know that [u]P .1 is the address generated by the rule on ξ.1, i.e. ξ.1.1, and
belongs to G[u]. Instead, in c-ludics we have that:

� if we start from a positive action, its premises have a name only if there
actually is a rule on it; otherwise if it is the ending rule of a branch,
we have a 0, no matter by which action it is justi�ed. Therefore, we
cannot link this name to [u]P , since there is no name.

� If we start from a negative action a(x⃗a) we know which are the positive
actions justi�ed by it only by the variables in x⃗a, thus x ∣ b⟨⋯⟩ is justi�ed
by a(x⃗a) if x ∈ x⃗a. Only then we may associate to b the same element
associated to a.

Using names instead of addresses forces us to modify the assignment
function [ ]P , and to deduce the assignment from the c-design structure,
reconstructing the justi�ed sequences from the base design by tracking each
variable. For instance, if a(x⃗a) = [u]p, for u ∈ SP , then we want to assign u
also to any positive name b such that xi∣b⟨⋯⟩, with xi ∈ x⃗a, is in DP ; then to
any negative name in the scope of b, and so on.

This implies that to each element of LocP ,SP and XP are assignedmultiple
names, depending by which ones are used in DP . We also need to substitute
the names of the base design every time we perform a merging between
JP K and JQK, and rename the assignments accordingly. This latter point is
necessary to ensure that there are no con�icts between [ ]P and [ ]Q, since
it could be the case that the same name is used in both base designs, but is
assigned to two distinct elements: one of P , the other of Q. There is no issue
from the c-designs viewpoint, since there is no superimposition of actions if
the variables are distinct, but it could happen between the assignments.

We must also note that most of the advantages of Terui's syntax go be-
yond the scope of our work: we do not need nor computational power, nor
the ability to represent data sets. Our focus is on process calculi, and what
we really lack is a way to represent recursive de�nitions. To this end, designs
generators could meet our needs, however we do not want to have on them
the kind of interaction used in Terui's work; i.e. the Krivine style normal-
ization. Terui points out that the reduction-based normalization does not
directly work on generators, because it involves substitution and renaming.
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The problem is that we want to let �nite generators require a possibly in�nite
number of steps to be normalized, to preserve the correspondence between
execution and interaction; in other words, we want interaction to be resource
sensitive. It could be the case that a process de�ned by recursion admits an
in�nite execution sequence; assuming that recursive de�nitions on processes
can be represented by �nite designs generators, then we want to be able to
represent this in�nite execution sequence by an in�nite interaction path, tak-
ing into account how many steps, thus synchronizations and channels, are
required to perform this execution.

This means that we want to be able to re-use a channel name only as
many times as we have already replicated it, and not re-using a single se-
quence of actions for the potential number of times it can be replicated.
This implies a de�nition of interaction that cannot re-visit actions already
visited, as instead happens in ludics with repetitions [6], where, as in c-ludics,
an abstract machine is used to de�ne interaction on strategies. In [6] ludics
is formulated in game-semantics terms, and the abstract machine used for
interaction actually duplicates the whole designs which are interacting, once
for every copy of the same address, thus e�ectively splitting the procedure
into linear sub-interactions, forming a bigger cut-net. As we will see, this
leads to other problems and solutions, that however do not �t our need to
preserve the correspondence between execution and interaction.

The standard de�nition of interaction with cut-nets is actually already
resource sensitive, since at each step a sub cut-net is considered, composed by
the sub-designs of the ones on which we have performed the previous steps.
This means that even if an action is repeated, it cannot continue interaction
on a dual already visited, unless also this dual is replicated: this is exactly
the kind of interaction we would like to use to represent recursion. The next
step is, then, to borrow design generators from c-ludics, and try to represent
them in the original syntax with the smallest possible extension, by using
standard interaction, with the goal to understand if this extension is possible
with no particular drawbacks.

6.3.3 Recursion and replication in standard designs

Let us look at a simple example of replicable process taken from [50], and
see how we could translate it in standard ludics. The process is formulated
in an extension of the π-calculus, therefore we leave the value-passing part of
the calculus aside. Here ? notes an input channel, and ! an output channel,
the parenthesis [ ] include the data (channel names themselves) to be sent,
for the output channel, or to be substituted (once data has been received)
for the input channel.
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Example 6.3.5. Let P = ∗f?[x, r].r![x], the identity function, where ∗ is
a recursive operator applied to f?[x, r] (the function is replicated after com-
munication). An equivalent recursive de�nition for the function is

id(f, r) = f[x, r].(r[x] ∣ id(f, r))

since it is replicated after synchronization on f � if it were replicated after r,
instead, we would have id(f, r) = f[x, r].r[x].id(x, r). Without considering
the values to be sent or received during communication, a translation in the
standard ludics syntax could use the following device:

id(f, r) = id(f, r)

[r].1.1 ⊢ ∗ξ
⊢ [r].1,∗ξ
[r] ⊢ ∗ξ

(+,∗ξ,{1,2})
⊢ [f].1,∗ξ
[f] ⊢ ∗ξ

where [f] = ξ.1, [r] = ξ.2, and ∗ξ note a special address, that we call
exponential, that is replicated after being the focus of a rule with a sort of
implicit contraction rule, essentially having the same role as !A in linear
logic.

This representation is motivated by our need to use such a structure as a
premise for a base design: we start by a negative rule, and we need to carry
over the positive address of the base, since every premise is a sub-address of
this latter; this lets us repeat the sequence of rules starting from the same
address ξ, limited to a sub-rami�cation.

We must also stress the fact that a generator, as id(f, r), refers to a spe-
ci�c recursive sequence of actions, independently by the context. Indeed,
in the second recursion step, where id(f, r) appears as a premise, the base
is not [f] ⊢ ∗ξ, but [f] ⊢ [f].1,∗ξ, with the context larger than at step 0.
This means that we still allow repetition of addresses, but in a controlled way:
they may be generated only by multiple actions on a special exponential ad-
dress. This also implies that we can keep track of the recursion steps, by the
numbers of repeated non-exponential addresses in the context at any given
time.

Although we have just extended the syntax with a sort of exponential ∗ξ,
note that this notation is only needed in the presentation of design as proof-
trees: in the more game-semantical presentation as sequence of actions the
context is hidden, and until there is an action on an address in the context,
this exponential would be visible only in the base of the design. However,
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using multiple copies of the same address, instead of an exponential as ∗,
implies that a design generator requires an in�nite number of copies of it in
the base. In general, an exponential lets us duplicate an address only when
needed, and as many times as we want, without having to know in advance
how many copies we will use. This is essential to represent design generators,
since a base cannot contain an in�nite number of addresses. Using this kind
of exponential, with a hidden contraction included in rules of which it is focus,
could seemingly let us interpret recursion while making the identi�cation of
justi�ed sequences simpler, as opposed to the syntax of c-ludics. Indeed,
one problem with repetition of actions in ludics is that justi�ed sequences
of actions � views or chronicles, depending on the setting � are not easy to
extract from a design.

As we noted in the example, repetition of standard addresses would be
admitted in this setting, though in a controlled way. Rules on these repeated
addresses are possible, but contrary to exponentials, they are not replicated
in the premises: to use them again we need, �rst, to perform another action
on the exponential generating them. This, along with a resource-sensitive
interaction could provide a solution to represent recursive de�nition of CCS
processes with a minimal extension of ludics' syntax.

We would have, so, two kind of addresses, the standard ones (ξ, ζ, . . .) and
the exponential ones (∗ξ,∗ζ, . . .). At �rst, it is clear that an exponential (or
replicable) address ∗ξ (we prefer ∗ instead of !, since this latter is also used in
the π-calculus to note output channels) cannot be in negative position. This
is because negative addresses are necessarily unique, since they have priority
in proof-search, and allowing multiple addresses at the left of ⊢ would bring
us outside the world of focused linear logic proofs. Therefore, only a positive
address can be replicated, by keeping a copy of it in the context each time a
rule is performed on it: in this way, only one copy of each exponential address
is present at a time in the context; while standard addresses, as noted, have
no restrictions. Thus, if an address needs to be in negative position multiple
times (as in the example), then it is the positive address generating it that
must be replicated, to let us perform the same negative rule again. With
respect to our example, since in id(f, r) a rule on ξ is repeated, an orthogonal
design would need a positive address ∗ζ, such that ξ = ζ.1. For instance, we
would have C = (−, ζ.1 = ξ,N)⋯(+,∗ζ,{1})(−, ζ.1,N), with ζ.1 ⊢ ∗ζ as the
base of C. In general, positive rules would be of the following form:

ξ.1 ⊢ ∗ξ ⋯ ξ.n ⊢ ∗ξ
(+,∗ξ, I)

⊢ ∗ξ
Using a replicable address instead of multiple copies of it does change how

interaction works, but could be the best solution to treat design generators.
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We will brie�y describe how instead interaction is carried out in ludics with
repetitions, show what are its problems and the proposed solutions, and why
we can't adopt it as well if we want to internalize �nite design generators
while keeping valid the execution-interaction correspondence.

Ludics with repetitions of actions

In [6], by Faggian and Basaldella, designs are de�ned as Hyland-Ong innocent
linear strategies on an universal arena, to then drop the restriction of linearity
in the de�nition of their equivalent of chronicles (de�nition 2.2.6), to allow
repeated actions with the same focus. The idea is that, during interaction,
every time an action is repeated, a copy of the counter-design is created, then
the address of this action is renamed to a fresh one in both the design and
counter-design, to induce the same renaming in the whole justi�ed sequence
starting from the action in question, and thus continue interaction as in the
standard case by breaking it into smaller linear pieces. In this way each time
an action is repeated, the design is partially reverted to a linear one, and
interaction can continue by duplicating and renaming the counter-design. To
give an intuition, we borrow some examples from the original paper in �gures
6.3.3 and 6.3.3.

Remark 6.3.6. Dropping the linearity constraint on designs does not entail
strong inconsistencies. While it is against the idea at the base of ludics, i.e.
abstracting proofs to keep only their interactive part and forgetting the logical
content, formally it only implies that the base of a design allows multiple times
the same address, and thus is a multi-set of addresses. Standard interaction
does becomes a little awkward, since there is no syntactic way to identify
which of the many copies of an address ξ we are performing a rule on, and
thus justi�ed sequences (on which interaction is based) are superimposed, and
become harder to isolate. Interaction as presented in ludics with repetitions
overcomes this problem, as is shown by the examples.

Problems of repetitions

The �rst issue encountered is that the separation theorem (explained in sub-
subsection 2.2.3) does not hold anymore (a counter-example is found in �gure
6.3.3). Indeed, there are di�erent strategies (the equivalent of designs) D1

and D2 which cannot be separated by a third design orthogonal to only one
of the two: they have the very same orthogonal designs, and thus interact
in the very same way. This somewhat nulli�es one of the aims of ludics,
to close the gap between syntax and semantics: the syntactic structure of a
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Figure 6.1: This is how interaction is intended to work. The numbers denote
the interaction n-th step. Repeated addresses and the de�nition of interac-
tion of ludics with repetitions allow to go back to already visited actions.

Figure 6.2: Formally the previous example works like this. σ(D) denotes
the design D where the ξ focus of the �rst rule has been substituted by the
address σ (in the base). While E[σ/ξ] denotes the counter design E , where
σ is in place of ξ. For each repetition of the positive action ξ+, a copy of E
is necessary, and interaction is carried out with D, where a di�erent address
is in place of each ξ, and thus for each copy of E .
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Figure 6.3: This is the counter-example to the separation theorem. However,
with standard interaction, step 5 would be forbidden, since after step 2 the
actions x− and y+ would not be in the cut-net anymore, e�ectively ending it
before reaching a daimon (there noted � instead of 6): this would separate
the two designs.

design should explicitly express its semantics, and how it interacts with the
other, therefore one should be able to identify and di�erentiate each design
just by watching at its structure; however, this is not the case anymore once
we allow repetitions.

The second problem is about having enough counter-designs, and is closely
tied to the internal and full completeness theorems9. Without explaining the
technical details, the problem lies in the interpretation of linear logic formu-
las into behaviours. Now that exponentials are admitted, the interpretation
of ?A must be able to respect the contraction rule: if a design D of base ξ be-
longs to the behaviour interpreting ⊢ ?A, then we should be able to transform
it (using only substitutions and renamings), to a design D′ of a behaviour
interpreting ⊢ ?A, ?A. To achieve this, non-uniform tests are introduced, a
sort of non-deterministic sum of negative designs, which requires to choose
an interaction path when encountered � one of the possible continuations of
the design. Since a part of a design may be accessed several times, each time
the same choice is presented; therefore two designs are orthogonal only if
their interaction reach 6 for every possible choice.

9The original statements and proofs can be found in [60] or [38].



185

6.3.4 Interaction with exponentials

On the side of our interpretation, we can easily see why this kind of inter-
action is not an optimal solution. In the �rst place, from a sheer theoretical
point of view, we would like to keep the separation theorem. That is because
it expresses the fact that the meaning of a design is caught by all the ways
it can be used, which are the totality of the interactions with all the possible
counter-designs. This is in accord with the meaning we gave to processes:
their dynamic, i.e. all the possible (depending by the process itself) and po-
tential (depending by the context) execution sequences. How each execution
is carried out, and thus how a process can communicate with the environ-
ment (i.e, the other processes), at any given stage, de�nes the meaning of a
process. Losing the separation theorem would nullify one of the reasons we
used ludics to interpret process calculi in the �rst place.

In the second place, we already stressed the point of a resource sensi-
tive interaction, which fails once we need to duplicate designs. Our cor-
respondence execution-interaction is based on the assignment function and
the sequence of visited actions; however, if we were to rename only a single
occurrence of an (repeated) address at a time, the correspondence becomes
problematic: we would need to extend the assignment every time there is an
action on the address in question, and let a replicated channel in the process
be associated to a potentially in�nite number of di�erent addresses. The
substitution needs to be done on the whole behaviour, since it must a�ect
also the restriction designs, with the e�ect that multiple, di�erent, addresses
will have the same restriction designs, that needs to be replicated for every
repetition of a rule (and potential subsitution of an address during inter-
action). Moreover, a duplication of the counter-design would also shift the
correspondence we have, since we would have two identical interaction paths
� in the same interaction-session � that visit the same action sequence, even
though on di�erent addresses, thanks to the renaming. These two copies
of the same interaction paths, however, correspond to two successive and
di�erent execution steps.

Interpreting interaction informally, instead, as repeated visits of a part of
a design each time a rule is duplicated, would still have a problem of super-
imposition: on the side of the process, that sequence of actions corresponds to
some synchronizations which already happened, therefore to elements already
consumed by execution, which cannot be recovered, unless duplicated by a
recursion. For each replication, one or more execution steps are needed, and
each time a channel is used, it is consumed. This means that, by revisiting
actions we lose the memory of the past execution, and at which recursion-
step we are. The other strong issue is the same of ludics with repetitions :
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there are not enough counter-designs to express all the possible execution
sequences. That is because non-linear strategy, using this kind of interaction,
are uniform by default: at a repeated action from the main strategy, they
respond always in the same way. This means that, once we duplicate an
address, or perform a recursion step, we have no way of using that address,
corresponding to a replicated channel, in a di�erent way than before.

Instead of using non-uniform tests, which extend the syntax of ludics in
such a way to bring it closer to the syntax of process algebras itself, the
solution we would like to achieve is the reformulation of design generators
in the standard syntax, by using the construct we showed in the example
6.3.5. This, paired with standard interaction, could give a us a way to fully
represent recursive de�nitions, while keeping the separation theorem valid,
at the cost of extending the syntax by introducing exponential addresses,
essentially the same solution used in linear logic to recover the lost expressive
power. However, this naive extension may not be without consequences.

We can note right away that an exponential blurs the distinction between
open and closed cut-nets, if using standard interaction. That is, if an address
∗ξ is replicated, then the fact that it is cut in the base is not relevant anymore,
since it is kept in the context. That matters, however, only if there actually
is a repeated rule on the replicated address. The other problem is that we
cannot counter an exponential ⊢ ∗ξ with an exponential in dual position �
i.e. cut an exponential only with another exponential � since ∗ξ ⊢ cannot be
admitted for negative rules, as we explained. It does neither work to require
that ξ = ζ.1 and that ∗ζ appears in the dual, since we do not know if ∗ζ will
be focus of a rule or not. A partial solution could be to re-phrase interaction
to include both cases (open and closed) at once, and let interaction continue
only if, for each repetition of a rule on ⊢ ∗ξ, there is a dual rule on ξ ⊢. Let
us take again the identity function of the previous example:

Example 6.3.7. Let P = νf(id(f, y) ∣ f c.yc.1), with id(f, y) = f.(y ∣ id(f, y)).
The synchronizations are (f, f c) = u and (y, yc) = v. There are no xor con-
ditions, and the partial order is f <P y and f

c <P yc. The base design is,
thus:

id(f, y) =

id(f, y) G[y]
(+,∗ξ,{1,2})

⊢ [f].1,∗ξ
(−, ξ.1,{{1}})

[f] ⊢ ∗ξ G[y] G[f c] G[yc] G[u] G[v]
(+,∗ξ, I)

⊢ ∗ξ

with I = {1,2,3,4,5,6}. Without expliciting the obvious restriction designs,
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interaction starts on G[u], then visits (−, [f],{{1}}) and (−, [f c],{{1}}) in
any order, to then possibly continue on G[v], and its channels y and yc.

An interaction could then continue on (−, ξ.1 = [f],{{1}}) and necessarily
visit the successive positive action (+,∗ξ,{1,2}).

At this point, a counter-design needs to have a negative action of the form
(−, ξ,{. . . ,{1,2}, . . .}), to then possibly continue on another branch with the
next positive action. This implies, however, that C has as base ξ ⊢ ∗ζ, with
ξ = ζ.1, since there is at least a second negative action on ξ.

While it is not exempt from problems, exponential addresses seem able
to represent design generators in the standard syntax, without the compli-
cations on the assignment that c-ludics entails, and with a resource-sensitive
interaction. A slight modi�cation of the interaction procedure is still needed,
since we cannot know anymore if we are in the open or closed case: an ex-
ponential address cut in the base could reappear as focus of a rule, but not
have a match anymore.

Another matter left to examine, to understand the consequence of the
introduction of an exponential, are the full and internal completeness

theorems (subsection 2.2.4), which still hold in c-ludics (as well as ludics
with repetitions). This possible extension of ludics, while based on an already
existing formulation, needs however further study to achieve a more de�ned
shape.
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7. Relations with other works

In this chapter we brie�y present other works with some points of contact
with ours, both to see what we have gained with respect to the state of the
art, and if our results can be applied or be useful in other contexts. The
chapter is divided into three main parts, that will end with the conclusions
of the thesis, in section 7.4.

The �rst part, section 7.1, is about the ideas of [9] by E. Be�ara (con-
tinuation of a work with V. Mogbil [12]), were CCS is typed into linear

logic proof-nets, to see more in detail which are its objectives and limits.
It is an important step with respect to our interpretation, since one of our
early goals was to try to get a similar result while avoiding its drawbacks: we
will discuss how the interpretation in ludics does overcome these limits, even
if taking a di�erent route than a standard typing. The aim of the work of
Be�ara (continuation of a previous work with Mogbil, [12]) is to �nd a cor-
respondence, rather than between CCS processes and proof-nets, between
proofs and execution, where cut elimination corresponds to performing an
execution sequence. We share the same focus on the dynamic of the two
systems begin what gives meaning to the objects themselves, however we
try to work on the logical system, ludics, instead that on CCS, to form a
correspondence: while in the work of Be�ara execution is scheduled, in order
to make it compatible with a con�uent procedure as cut-elimination, we try
instead to �nd a way such that the dynamic of ludics is able to describe the
non-con�uence of process execution.

The paper in question starts from the simple setting of MCCS as we
do, in the standard multiplicative linear logic grammar with the addition of
modalities to represent channel names. A translation is carried out between
the two syntaxes, and to each process-construction rule are associated a �xed
sequence of linear logic rules, in such a way that to eachMCCS process P is
associated a proof-net [P ]s; then, the execution rule is interpreted as the
linear implication ⊸.

The main theorem of the paper shows that, taken a MCCS process P ,
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there is an execution P →∗ P ′ if and only if [P ]s ⊸ [P ′]s is provable in
multiplicative linear logic; this leads to the fact that, to obtain the proof
net corresponding to P ′ it su�ces to consider the cut between [P ]s and
[P ]s⊸ [P ′]s, and perform cut elimination.

Therefore in [9] a correspondence is built between process execution and
cut-elimination, however this connection is strongly limited by the fact that
we have to know in advance which execution step we are going to make,
and thus is tied to a scheduling of execution: in this way, each execution
step corresponds to its own, di�erent proof-net, and we lack a single object
as interpretation for each process. Our interpretation in ludics manages to
form an equally stronger correspondence in dynamics, while giving a single,
though complex, object that can characterize all the executions at the same
time.

The second part is about session types, which we shortly introduce in
section 7.2. We focus in particular on the work of Kobayashi, Saito and
Sumii ([50]), about a typing for a version of the π-calculus that allows to
check for deadlocks, with a very speci�c meaning of deadlock: a process is
deadlocked if there is no synchronization on speci�cally tagged channels on
which communication is expected. Being able to tell by the type of a process if
there are deadlocks in this sense is the main concern of the paper, since session
types are used to ensure a safe communication protocol between agents, and a
typing deduction system is built to make sure that communication actually
will happen on certain channels during execution of a given process. Our
interpretation, when adapted to the π-calculus by ignoring name-passing,
can achieve the same result in a trivial way; thanks to the correspondence
execution-interaction, and the information of the assignment [ ]P , checking
in JP K if certain channels actually synchronize is extremely simple: it just
su�ce to check the interactions on JP K, or, in a constructive way, attempt to
build a counter-design of JP K that visits the desired branches on DP . Inside
[50] is also found the example of the identity function (example 6.3.7) that
we used to show how exponential addresses could work in ludics.

The last part, subsubsection 3.2.2, shows a few obvious connections with
event structures, through the con�ict and causal dependency relations, which
can be associated to, respectively our xor conditions and the partial pre�x
order. We also talk about the work of Faggian and Piccolo [27] that focus
on forming a correspondence between typed confusion-free event structures
and linear strategies (the game semantical de�nition of designs), and how
our interpretation could form a bridge between event structures and ludics
without the restriction to confusion-freedom, but further study is needed to
clarify this connection.
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7.1 MCCS to proof-nets: scheduling in concur-

rency

In [9] the general goal is to be able to match linear logic proofs with process
execution, in such a way that cut elimination corresponds to an execution
sequence. We made ours that same shift in the standard approach to a
correspondence: instead of searching a correspondence between terms of a
process algebras, and linear logic (formulas), we focus on their respective
dynamics.

The main di�erence in our approach is the choice of the logical system, in
order to avoid necessary limitations or compromises on the process algebra
to make a correspondence work. Since the meaning of proofs is their normal
form, cut elimination is and should be con�uent; processes of a concurrent
system, instead, do not have a single irreducible normal forms, therefore their
meaning becomes rather all their potential execution paths and thus inter-
actions with the environment: the solution to form a correspondence of [9] is
to make the concurrent system deterministic by scheduling execution, i.e.
making it con�uent and thus compatible with cut-elimination. This entails
that, for each execution P →∗ P ′, for a process P , there is an associated
proof-net, but only for that speci�c execution step. Instead, we are explicitly
trying to catch the non-con�uence of execution in the chosen logical system,
ludics: we searched for a way to make interaction able to represent non-
con�uence, rather than restricting execution to make it con�uent. The main
drawback of our approach is that standard ludics lacks the exponential part
of linear logic, and as we saw extensions to non-linearity are not �t for our
interpretation.

Outline of the work

The paper starts by considering MCCS processes, and multiplicative linear
logic extended with modalities (called MLLa) ⟨a⟩A and ⟨a⟩A, attached to a
formula A. Two cases are distinguished: the synchronous one (where execu-
tion is considered step-by-step), and the asynchronous one (where maximal
execution sequences are considered). In both cases, a translation is de�ned,
from terms ofMCCS toMLLa formulas, using modalities to denote channel
names, leading to a proof [P ]s (where the s stands for synchronous) for every
MCCS process P .

The main result of the synchronous translation part is a theorem stating
that there is an execution P →∗ Q if and only if [P ]s ⊸ [Q]s is provable in
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MLL without modality rules1; the main result of the asynchronous translation
part instead deal with reduction sequences to the empty process 1, and say
that there is an execution P →∗ 1 if and only if [P ]a ⊸ [1]a is provable in
MLL (without modality rules)2. These theorems form a correspondence be-
tween execution of MCCS processes and cut-elimination of proofs, however
there is a clear compromise to be made, that is scheduling execution. For
each execution sequence of a process P there is a MLL proof corresponding
to it, however there is not a single proof for all executions, and therefore
there is not a translation in linear logic that can catch the whole behaviour of
a process, in the sense of all its possible executions, by giving a single corre-
spondent in the logical system to each process of the calculus. Furthermore,
the scheduling of execution requires to know in advance which execution step
to trasnlate, giving a strong limitation to the correspondence; for instance,
deadlocked processes cannot be translated in a proof-net (the result of the
translation would be an incorrect proof structure).

Comparison with our interpretation

Our interpretation gives a complex translation for each MCCS process P ,
but is able to represent with a well-structured object its whole behaviour,
with a superimposition of terms with ludics. It is a multiplicity of elements,
being a set together with the assignment function, however it is the output
of an operation of interpretation that can characterize all the executions of
P at once, via interaction with its orthogonal. In this way we can overcome
the strongest limitation, that was also the solution, of the work of Be�ara
and Mogbil, that is the scheduling of executions, by catching both the non-
determinism and non-con�uence of the dynamic of CCS through a set of
interactions, instead of performing cut-elimination on a single element.

Not only we give to P an interpretation JP K that can catch the mean-
ing of P , in the sense of all its possible execution sequences, but the same
interpretation can account for all reduced forms of P , via reduction on the
interpretation (de�nition 5.2.11). The interpretation JP K has thus a clear re-
lation with any P ′ such that exists an execution sequence P →∗ P ′, and there
is a nice correspondence with reduction sequences P →∗ 1, by applying our
reduction on JP K until we obtain the design One, if that is possible. More-
over, we can also trivially interpret the name hiding operator ν, that instead
gives some troubles with the proof-nets correspondence, and also deadlocked
process, that have no correspondence at all in a proof-net translation.

1[9], p.8 for the full statement and proof of the theorem.
2[9], p.11 for the full statement and proof of the theorem.
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However, while an extension to the non deterministic choice + is rather
straightforward in both works � Be�ara mentions that it su�ces to use addi-
tive proof-nets for the sum � as we know treating replication is not a simple
matter in ludics. For linear logic, there is a solid proof-net interpretation
of the exponential !A using boxes3, instead for ludics there is no de�nitive
extension to exponentials and non-linearity, and the existing ones do not let
us directly transfer our interpretation in a non-linear setting for ludics.

7.2 About a deadlock free calculus

We attempt to apply our interpretation to session types by simplifying the
π-calculus there used and taking a few simple examples from [50], to see what
we can accomplish with our results.

Session types aims to ensure security and absence of errors during com-
munication in parallel and distributed systems. These programs heavily rely
on communications of various agents, as in web services and client-server
interactions. Typing should ensure safe and correct communication, by mak-
ing sure both parts are respecting a communication protocol � if their types
match, then communications will happen as intended. Type systems have
been devised in particular for extensions of the π-calculus, as in the work of
E. Sumii and N. Kobayashi (later re�ned with S. Saito) about session types

for deadlock free processes. Their motivations come from practical im-
plementation problems, in particular being able to guarantee communication
on speci�c channels � i.e. that sending an output and receiving an input on a
chosen channel will actually happen; the absence of communication on such
channels is considered a deadlock.

The �rst interpretation was restricted to reliable channels, either linear
(used once), recursive or mutex channels; then it is generalized to extend the
deadlock-free part of processes considered (other than reliable channels4),
and �nally in [50] it gets reformulated to an implicit interpretation with
type reconstruction, for easier interpretation in programming. The addressed
problem is thus deadlocks in a very broad sense: a process is deadlocked
when there are particular channels waiting for synchronization, on which
communication is expected, that cannot �nd a dual in the context. Therefore
a process is considered deadlocked if it is in normal form, di�erent from 1
(there noted 0), and contains special channels waiting for communication. In
addition, to describe the behaviour of each channel (if its used as input or
output, and which values sends/receive), a time tag relation de�nes a partial

3For instance, see [40].
4[64], introduction.
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order on them, which must be respected during communication. A process
is, then, deadlock free if reduction on the type, given a time tag ordering
mirroring the pre�x partial order, yields an empty set.

In CCS, as we know, there is no data passing; therefore we need to sim-
plify the setting to be able to apply our interpretation to a few examples.
Using JP K, checking if there is synchronization on a certain channel is ex-
tremely simple, since all we need to do is look at its interactions with the
orthogonal: if some interaction visits the rami�cation corresponding to the
channel in question, for the correspondence execution-interaction, then the
channel in question will synchronize with a dual in the associated execution
sequence. Since the interpretation fully characterizes execution of the pro-
cess, we do not need a tag ordering (which corresponds to the partial order
on locations, coded in the restriction designs), and any interaction does cor-
respond to a possible reduction (that we call admissible execution); therefore
we can easily use our interpretation to describe and check deadlocks in this
broad sense.

Applying our translation in a di�erent context

We show some simple examples, taken from the cited work, to see what can
we achieve using JP K. In the version of the π-calculus considered, the syntax
is as follows: x! is the output channel (still noted x in other version of the
calculus); x? is the input; [ ] denotes that no data is sent on the channel; and
c denotes that the labeled channel is expected to synchronize, or succeed, in
the sense that the data should actually be received from or sent to another
channel.

Example 7.2.1. The processes

P = (νx)(x?c[ ].0)

and

P ′ = (νx)(νy)(x?c[ ].y![ ] ∣ y?[ ].x![ ])

are both in a deadlock, because the input x? is labeled with c but cannot
synchronize with a dual channel. Instead, neither Q = (νx)(x?[ ].0) nor
Q′ = (νx)(x![ ] ∣ x?c[ ].0) are in a deadlock.

If we treat them as CCS processes, we have that P has no synchroniza-
tions (a single private channel), so in JP K there would be no meaningful
interactions, as in JP ′K, which, however, has two synchronizations that form
a cycle in <SP , and thus is deadlocked even by our de�nition. This implies
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that in JP ′K no interaction visits the branches associated to any of the two
synchronizations.

Regarding Q, JQK has the exact same interactions as JP K, however the
label c is missing (hence is not considered deadlocked). Q′ instead has a pos-
sible synchronization between x! and x?c, reducing the process to 1. We have
that in JQ′K the execution →u=(x!,x?c) is associated to at least one interaction,
and that the reduction (JQ′K)u on the interpretation yields the design One.

Another example shows how to use typing rules and time tags.

Example 7.2.2. Let P = ∗f?[x, r].r![x] (that is the identity function), where
∗ is a recursive operator applied to f?[x, r] (the function is replicated after
communication), and x, r are channels sent as data. It receives the argument
on x and a channel on r, to then send back the same argument on the received
channel. It holds the following judgment:

∅;{(tf , ty)} ⊢ (νf)(P ∣ (νy)f !c[true, y].y?c[z].0)

The pair (tf , ty) means that communication on f must succeed before com-
munication on y (it is, indeed, the pre�x order), and ∅ that interpretation
reduction ends successfully, i.e. all channels will communicate. ∅;{(tf , ty)}
is the type judgment for the process. What happens in the parallel composi-
tion is that f !c[true, y] synchronizes with ∗f?[x, r].r![x], which then becomes
∗f?[x, r].r![x] ∣ y![true], and sends back to y?c[z] the value [true] received.

This is the identity function we took as an example of recursive de�ni-
tion to de�ne exponentials in ludics. As we saw we can attempt to represent
the replication, though not the name passing, in such a way that interaction
on JP K will respect the order (f !c,∗f?) ≼SP (y!, y?c) in their associated ex-
ecutions. Interaction can visit G[x] for every channel x ([f !], [f?], [y!] and
[y?]), therefore the base design (the one of example 6.3.7) is material in JP K,
which means that P is deadlock free by lemma 5.3.10.

The partial order given by pre�xes is implicit in the interpretation thanks
to the restriction designs, therefore we do not need to require that the inter-
pretation reduces to One to have a general property of deadlock-freedom: a
process is thus deadlock free in the sense of [50] simply if interaction visits
all channels noted with c.

7.3 A close connection with event structures

The similarities between event structures and our interpretation are rather
direct, since event structures (that we introduced in 3.2.9) are a model for
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CCS-like calculi5.

Recently event structures have been showed to model the πI-calculus (the
internal π-calculus [63]) by D. Varacca and N. Yoshida. In [27] event struc-
tures and linear strategies, which are designs in game-semantic terms as well
as a class of Hyland-Ong innocent strategies, are related in order to see the
latter as a particular case of the �rst, a sub-class of confusion free event
structures. The work of C. Faggian and M. Piccolo in particular aims to see
typed confusion free event structures as a generalization of linear strategies,
and to extend thus linear strategies with non-determinism in order to model
a linear �nitary π-calculus (without replication). Event structures, being a
model of CCS and the π-calculus (to some extent) have some direct superpo-
sition of concepts with out interpretation, and seem to be directly represented
in ludics by our interpretation. Indeed, we are essentially representing the
relations used to de�ne event structures through interaction in a behaviour
directed by the restriction designs. Both notions of causal dependency and
con�ict relation are essential to build JP K, the �rst being essentially the par-
tial order on locations <P � which induces the order ≼SP on synchronizations
� the second the relations XP and +P , while concurrent events correspond
to independent synchronizations(de�nition 5.5.1). The main di�erence here
is the level of abstraction: we are focusing on its executable part, i.e. the
synchronizable pairs, instead of working only with single channel name oc-
currences, that are interpreted into events.

The relevant relations we need for the interpretation are the partial order
on locations <P , and the xor relations, which are de�ned on pairs of dual
channels instead of single ones (and also pairs of locations for +P ). Yet, we
can switch from ≤ to <P and from ⌣ to XP with ease: it su�ces to see events as
synchronizations, or to label them with actions that correspond to channels,
as in the typing of [27]. In our case, it seems possible to reformulate GP , that
we can translate in ludics-terms, as an event structure without the requisite to
be confusion free. The notion expresses the fact that choices are local, which
is the equivalent of con�uence in a non-determinist setting. While linear
strategies might be seen as a special case of confusion free event structure,
we could associate to an event structure E an interpretation JE K, without
particular constraints on it. Since event structures are a model for CCS, we
could start from a process P , then pass to an event structure E modeling it,
and then interpret it in ludics; we would so achieve a correspondence between
E and JP K.

In the interpretation of processes into event structures, events are labeled
with actions and polarities : a polarity can be +, − or neutral ±, a label is of

5Recall the work by Winskel [68].
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Figure 7.1: Regarding the similarities with GP : t1 is a minimal synchroniza-
tion, the edges are oriented arrows aiming downwards; the con�ict relation
(the irregular edges in the �gure) stands for the sum +, and can be translated
as a generic xor relation. Being or not confusion free does not matter for the
ludics interpretation.

the form (a,+) or (a,−), or (a,±), where the neutral polarity denotes a pair of
dual actions (so a synchronization). By identifying channel occurrences and
the locations labeling them, and giving neutral polarity to synchronizations,
the relations ≤ and ⌣ between the elements would then be rather straightfor-
ward to interpret.

Regarding the correspondence with linear strategies, we can relax the
constrains on the con�ict relation, which in confusion free event structures is
con�ned to cells (recall that they are closed units of events in con�ict with
the same predecessor). Another interesting point with [27] is that the notion
of cell is very close to the & rule of linear logic, but there are some rele-
vant distinctions. In particular, only negative cells, that contains by negative
actions, are considered as corresponding to the & rule, while positive or neu-
tral cells, which represent internal choice, are without correspective in linear
logic, but with a very similar behaviour. Instead, by using the xor relation
we can represent both the non deterministic choice + and the internal choice
⊞, that we de�ned in 6.2.2, as well as the mutual exclusion between synchro-
nizations with a common channel. In DP they have a common correspective
in a negative binary rule, which is used as an intermediate step to separate
the interaction paths visiting the members in con�ict, via the restriction de-
signs. The causal order or enabling relation as well is represented locally
via the restriction designs on the partial order <P , while the full relation is
implicitly respected by interaction on JP K. This di�ers from the usual game
semantic interpretation, where the enabling relation is interpreted in the jus-
ti�cation between actions, i.e. the sub-address relation of ludics. What we
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have gained with our interpretation is thus an uniform representation for the
elements and relations of event structures inside directed behaviours.

Discussion

In conclusion, we hope that our interpretation can give some new insights
in the relation between process calculi, the game semantical formulation of
ludics, and event structures, via the interpretation of ≤ and ⌣ into directed
behaviours, thus giving, to an extent, the inverse relation of Event structures
and linear strategies. Despite being a direct correspondence, it will require
further work to be explored in depth. What there seems to be gained from
this correspondence is a way to model event structures in the sequential
setting of ludics, without the need to con�ne the �rst to confusion free event
structures, or add non-determinism to linear strategies.
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7.4 Conclusions

This work started from studies on the extension of the Curry-Howard corre-
spondence outside its standard intuitionistic setting, to models of concurrent
and parallel computation. The main motivation behind the thesis was to �nd
a way to form a satisfying Curry-Howard counterpart for a process algebra,
in our case CCS, that would overcome the intrinsic problems and limita-
tions found in the previous research on this topic. Linear logic has been
the focus in most of these studies, as a logic particularly tied to interaction
and thus apparently apt to represent process algebras, however the con�uent
nature of cut-elimination necessarily hinders a correspondence in dynamic
between processes and proofs (or proof-nets), since execution on processes
is, by default, non deterministic and non con�uent. The proposed solutions
mostly o�er a partial correspondence between cut-elimination and execution;
a common way to proceed is to restrict the syntax of the calculus to ensure
linearity of channel names, i.e. to limit the occurrences of the same name, in
such a way to avoid possible con�icts in the form of multiple choices of syn-
chronization at each execution step, that as we saw generally split execution
in two parallel sequences, that bring to di�erent normal forms.

A di�erent kind of solution is found in proofs as executions, where the cor-
respondence is shifted in order to match a proof with an execution sequence;
however the compromise here is to have a di�erent proof for each execution
sequence, and a di�erent proof-net for each reduced form of the process, that
must be known in advance to be able to form the correspondence in the �rst
place.

On our end, we took a similar approach, but with a di�erent goal in
mind. The objective was to form a correspondence in dynamic between pro-
cess algebras and a logical system without restrictions or compromises. We
choose CCS as the process algebras, being the most basic one and paradigm
for the others, and ludics as the target system, since it is a reformulation
of logic from scratch ever more tied to interaction than linear logic, from
which it generates: interaction is the central concept around which ludics is
built, and designs are its syntactical support. Thus, the objective became
to interpret CCS inside ludics, in such a way that execution would corre-
spond to interaction as proofs do to programs in the original Curry-Howard
correspondence.

This goal has been partially achieved by our work, with the exception of
replication and recursive de�nitions, that elude a clear and straightforward
representation in standard ludics. The main results we managed to obtain
are:



200

� A translation of replication-free CCS processes inside ludics as sets of
designs, that can be closed to bi-orthogonality without consequences
for the technical results, obtaining thus a correspondence between pro-
cesses and behaviours, the types of ludics.

� A logical characterization of the dynamic of (replication free) processes
by the correspondence between execution on the process and interac-
tion on the interpreting set of designs, achieved without forcing the
process into functional computation, resorting to multiple translations
by partially determinizing execution via scheduling, or sacri�cing the
non-determinism or non-con�uence itself (by imposing linearity and
other constraints on the syntax). This characterization entails the pos-
sibility to check on the interpretation the possible executions of the
interpreted process, by a simple read-back procedure: while there are
multiple interaction paths describing the same execution sequence, ev-
ery sequence is described, and no interaction path describes an incorrect
or impossible execution on the process. We are able to identify through
interaction each step of an execution, and not only its �nal result; this
property also highlights the fact that the meaning of interaction lies in
the same place of the one of execution: what is important is the path it
takes, and not the �nal result, that in ludics case is only �convergence�
(6) or �divergence�.

� A partial modularity of the interpretation, which let us combine the
interpreting structures, behaviours in our case, as we do with processes
via parallel composition. We are able to represent the composition via
a ludical operation on behaviours that, in the trivial case where there is
no communication between two processes, exactly interprets the linear
logic tensor ⊗. Otherwise, some more arti�cial and non-ludical steps
are required, by working on the assignment functions, but the core
operation ⊙ is kept intact on base designs.

� Insights on the dynamics of processes, as: expliciting what parallel
composition entails when two process communicate, what causes forks
in an execution paths, and how the di�erent reduced forms of a process
are related through their interpretations.

� An interpretation that is somewhat close to a typing since it enjoys
a type-construction-like property, i.e. the interpretation of a process
can be built via operations on behaviours that matches, step-by-step,
its syntactical constructors: other than parallel composition, also the
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action pre�x (a.P ), and non deterministic sum (P+Q) are representable
via modi�cations of the same basic operation.

� A reduction on the interpretation that matches execution, and describes
a particular inclusion between the interpretations of a process and one
of its reduced forms, with respect to their structures and possible inter-
actions. This is in contrast with the standard subject-reduction prop-
erty of typing systems, that was inconsistent with the intended meaning
of processes. This reduction let us further deepen the connection in dy-
namic, since we are able to recover from the interpretation alone all the
reduced forms of the process, as well as its �nal normal forms. As a
consequence, we found a clear connection between the empty process
and the linear logic multiplicative unit 1, through the design One.

� Along with execution, deadlocks are also characterized. Instead of being
a property of the interpretation � as it is with typing systems, where
if a process is typable, then it is deadlock free � the interpretation in
ludics is oblivious of their presence, as is interaction on behaviours.
Still, we have a way to know if a process is deadlock-free, or if it can't
be reduced to 1, via the visitable paths, or incarnation, of the base
design in the behaviour BP .

Future research directions

While we found most of the results we were hoping for, and successfully
formed a Curry-Howard correspondence between CCS and ludics, in its
current state it only holds for replication-free processes. The recursive or
exponential operator, in either the form found in CCS or the π-calculus,
is the hardest part of the interpretation, and we are only able to point at
some possible paths to follow, that could bring to a solution after further
research. In order to represent recursive processes an extension of ludics to
non-linearity seems necessary, however a �rst attempt could be made with
the controlled replication of the πI-calculus of [67], that could dispense us
of such a step. In the work by Varacca and Yoshida communication cannot
happen between two replicable channels, each synchronization is unique, and
input channels are always unique: this let us ignore the complications of a
replicable sub-process as !a.P , which would require us to count the number
of synchronizations with its replicable pre�x !a to know how many times P
is available for synchronization. A possible way to represent this controlled
replication is via in�nite branches, that are admissible on designs; however
the limit cases of the syntax still seem problematic to carry out a clean cor-
respondence without replication of addresses.
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A reformulation in c-ludics. While we have some doubts on controlled
replication, reformulating the whole interpretation inside Terui's computa-
tional ludics would be a much cleaner option. Finite design generators seem
to exactly �t our needs, being built with the purpose in mind of representing
recursive programs. Unfortunately the issue with c-ludics is found at the
core of computational ludics itself, that is its π-calculus like syntax. While it
is much more suited to represent functions and data types, it heavily hinders
our correspondence: the lack of absolute addresses makes much harder to
identify justi�ed sequences of actions, and which element of the process is
associated to them, heavily a�ecting the assignment function, that becomes
impossible to de�ne, being dependent by the changes/renaming that could
happen to the names of a c-design during composition or reduction (its names
need to change to make their arity consistent with a composed/reduced c-
design).

Importing design generators into standard ludics. After exam-
ining interaction inside ludics with repetitions, we reach the conclusion that
it is not the solution we seek. Interaction should be resource sensitive to
be able to accurately describe execution, and keep all the properties of the
correspondence in dynamic we de�ned; instead, in ludics with repetitions,
designs must be duplicated, and sequences of rules visited multiple times: an
expected step in a non-linear setting, that however is inconsistent with the
properties we want the characterization of execution to have.

The solution we propose is, thus, to try to re-formulate �nite design
generators in standard ludics, with the only addition of special exponential
addresses. Instead of allowing addresses to be replicated at will, with no
restrictions, we introduce special positive only addresses marked with ∗, as
∗ξ, that are kept in the context after a rule on them, e�ectively mimicking
a contraction rule. For this reason, their role is similar to ! for linear logic,
meaning that they are not a linear resource. Using this kind of exponential
addresses is not hard to translate into the standard syntax �nite design gen-
erators: the resulting designs seem able to represent recursive functions, as
the one of Example 6.3.5. However, such an extension to exponentials re-
quires further study to prove its consistency with the core theorems of ludics,
and the results of our work.

Event structures. A �nal direction that has yet to be fully explored
is the connection with event structures. Winskel showed that event struc-
tures are a model for CCS-like calculi, then, in what aspects do they di�er
with our interpretation? Can we prove the same results using event struc-
tures? Can we show that ludics is a model for CCS-like calculi in the same



203

way that event structures are? The evident close relation with our inter-
pretation points at the possibility to see our results as an interpretation of
event structures, rather than CCS, inside ludics. By transitivity, it would
automatically hold that ludics is a model for CCS-like calculi: if a behaviour
corresponds to an event structure, then it also corresponds to a CCS process,
and vice-versa, if a CCS process is modeled by an event structure, then is
modeled by a behaviour as well. This connection, once based on more solid
grounds, would provide a bridge between ludics, hence also game semantics,
and true models of concurrency, without the need to extend the correspon-
dence speci�cally for each di�erent process calculus that can be modeled by
event structures.
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